爱爱小说网 > 体育电子书 > 地球-我们输不起的实验室 作者:斯蒂芬·施奈德 >

第7章

地球-我们输不起的实验室 作者:斯蒂芬·施奈德-第7章


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



  冰芯记录(见图2.3)表明在过去的大约1万年间(人类文明时代),气候、CO。及甲烷的含量保持相对的稳定。在过去的两个世纪(工业革命时代)以前,温室气体的化学成分也几乎不变。全新世时期,伴随从本次冰);1期到现代间冰川期的5000年的过渡时期,全球温度平均升高SC和海平面上升100米,此后地球的生态系统和生物聚居地,即以我们今日所知的面貌出现。大自然化了大约5000一1    年的时间,才将北美洲和欧洲的大部分地区以及高纬度海区被冰所覆盖的地表景观,转变为目前的主要在两极陆地和海区以及高山地区才出现终年冰盖的地表景观。由于这一转变正好对应着SC左右的全球变暖,我们因此可以估算全球自然的、持续的稳定变化速率约为IC/千年(请记住这一数字,我们在后面还将多次提及这一数字)。

  我已经指出过,这些变化足以使物种的聚居地和聚居的物种环境发生急剧变化。它们或许还导致了诸如猛局象和剑齿虎这类动物的灭绝。

  盖亚假说还是共同进化

  在某些方面及某些规模上,生命对保持稳定的气候变化起到了促进作用。然而,在从间冰川期到冰川期或从冰川期到间冰川期的过渡时期,生命所起的作用似乎是加速了(而不是减缓了)气候的变化。这种复杂性使我在20世纪80年代,将其与18年前生态学家保罗·埃利希和彼得·雷文(Peter Raven)所命名的一种生物过程相类比。两位学者的研究阐明了两种相互作用的物种的共存,是如何导致与它们相异的另外一些进化路径。他们称之为共同进化。

  我觉得,气候与生物的共同进化是一个合适的类比。换言之,如果缺失其中任何一方,生物以及包括气象要素在内的无机环境,将会在地史时期遵循与它们所曾经历过的完全不同的进化路径。共同进化在正反馈或负反馈之间并没有特殊的倾向性要求,它需要的仅仅是相互作用,而地球的化石和沉积记录无疑成为这种相互作用的见证。

  最后,如果允许人类将自己视作生命(即生活着的自然系统)的一部分,那么,我们可以说,人类对地球的集体作用,完全可以成为地球未来的一个重要的共同进化因素,这种集体作用被某些研究者称为“工业代谢作用”及新的工业生态学。(有关这种作用好坏与否是一个价值问题,对此我们将在本书的结束部分予以讨论。)

  目前人口的持续增长趋势、对高质量生活水准的渴望以及为了达到这些以增长为导向的目标而采取的技术和组织方式,均促进了被经济学家称为残余物(residuals)(而我们大家称之为污染)的副产品的产生。

  在这些地质时代内的全球规模的自然实验中,没有一个实验能够精确地与目前正在进行的由人类活动引起的全球变化实验相比较。因此,我们仍无法提供决定性的证据来证实我们的预测是对的。这些实验只是积累一些恰如其分的证据,使得我们目前的预测至少是合乎情理的。它们当然也证实了我的看法,即为了对地球未来的气候变化进行关键的预测,以认识地球生态系统及人类的命运,我们必须从陆地、海洋、冰盖中挖掘出尽可能多的地质、古气候和古生态记录。不幸的是,一些目光短浅的政治势力常急功近利,削减这些似乎深奥难懂的研究的费用。

  上述记录是地球自然历史的图书馆。它们提供了一种背景,对照这种背景,我们可以调整目前仍显粗糙的手段来洞察模糊不清的未来,而这种未来正遭受着来自人类的日益增强的影响。








第三章 是什么引起气候变化

  模拟是一种手段,它是我们用来预测未来变化或借以解释过去曾经发生过的事件的重要方面。为了检验模拟对于描述实际古气候事件的各种数据的适应性,了解过去曾经发生过的事件的某些重要方面是关键所在。这样的检验,将有助于科学家了解,如何使用来自这些模型的有关信息以及如何去证实他们的预测。我们因此也将能在进入新世纪之际,更好地对面;临的大量公共政策问题进行评价。遗憾的是,已知的气候模式可能未能包含所有的未来条件,而我们的各种模型尚未能针对迥异于已知气候模式的各种情形进行较好的调整。因此,我们仍需继续寻找进一步检验模式的各种途径。我们所拥有的用以进行这类检验的最好的物理实验室,并不是那种由玻璃和钢材构筑而成的实验室,而是地球本身,特别是我们所掌握的有关地球历史时期的知识。是上下涨落还是衡稳趋势

  可以在各种不同的尺度上对气候进行模拟,这些时间尺度可以从数千万年(例如,白至纪的时间尺度)到10万年(如冰川期、间冰川期的交替变化),抑或数年。

  为了了解并可靠地预测全球变化,需要进行许多不同时间尺度的模拟。与地球系统科学有关的全球变化问题,主要考虑的是人类引起的气候变化。根据全球气温记录,并进行适当平均,显示自19世纪中叶以来全球温度上升了大约0SC(图3.1)。有人仍坚持认为这一变热趋势,特别是20世纪80一90年代创记录的变热,仅仅是一种自然涨落。因此,对各种时间序列下可以识别的特征变化类型进行分析,或许会提供一些帮助。

  其中一种变化是这样一种周期性变化:时间序列围绕某一均值上下摆动。

  还有一种可能是在两个长期均值之间的跳跃性变化。例如,当一座火山喷发时,抛向平流层的硫酸烟雾将阻挡部分太阳光,并引起地表的快速冷却,这就是一种跳跃性变化。地表的变冷效应通常可以保持1年左右,然后温度在一个数年的变暖趋势中呈逐步升高趋势。1991年菲律宾的皮纳图博火山的喷发就是这一情形,其温度效应可以在图3.l中观察到。

  在长期的上升趋势中也可以出现短期的下降趋势。在过去100年间,全球表面温度经历了一种整体的上升趋势。叠加在这一上升趋势之上的,是一些数年或数十年的温度“反弹”。这些反弹是一些自然的、随机的涨落过程,还是由一些可以确定的气候系统以外的外界营力(不管它们有多么小)引起的?如火山尘埃、太阳辐射变化及人类活动等。对此,研究人员和气候观测者们仍争吵不休。

  一个有趣的假想例子是这样一种时间序列,在该序列中,虽然温度的长期平均值是恒定的,但随着时间的推移,序列内的变异增加了。例如,温度下降到OC以下仅仅几个小时,就足以使一棵玉米夭折。对这棵玉米来说,温度越过冰冻这个门槛就是一次大事件,不管这种温度仅仅是一种随机的涨落变化还是代表了一种真实变化的趋势。同样,一只鸟或一只昆虫死于30C以上的高温所预示的是一种变异程度不断增加的趋势,对这些动物来说,这是一件相当大的事件,但是,对一个只关注温度的长时期变化的气候学家来说,他并不会将此视作是一种气候变化。同样,对于那些老年人或流浪者来说,仅仅几天的酷暑即可置人于死地,有如1995年7月热浪袭击芝加哥时所发生的悲惨事件一样。

  科学家们总是在寻找变异背后的种种原因,如果这些原因是可靠的,它们将有助于科学家们在涨落中区分出真正的变化。正如我曾经指出的那样,过去的气候是多变的:有冰川期、有延续数千万年的无冰时期、甚至还有一二十亿年大气中缺失或极少含有氧气的时期。与现代相比,各大陆曾处在不同的地理位置,来自太阳的能量也不一样,而大气的成分亦有差别。换言之,地史时期的一些天然“实验”曾见证了一些尺度极大的变化,在许多情形下,甚至比人类在未来几十年内通过改变大气化学成分所能施加的影响还要大。但是,与人类所可能施加的影响相比,这些巨大变化的自然速率通常(但不完全是)要缓慢得多。要预测气候,我们不应仅仅局限于寻找验证的手段,我们还需要识别、分析促使气候变化的各种因素,这些因素被称为“气候营力”。

  循环

  地球轨道形状控制某时某地抵达地球的阳光数量,它就是一种气候营力。比如,来自太阳的热量促使了季节的变换。基本的大气循环是由太阳营力来驱动的。当阳光照射进来时,其中一部分阳光立即被反射回太空,这种反射绝大部分是由云、沙漠和冰盖来完成的。地球的这种反射阳光的能力又被称为反照率,它决定了所吸收的太阳能的数量。人造卫星观测所得地球整体的反照率为30%左右。

  因为地球呈球形,其表面积的50%位于南纬30C线和北纬30C线之间。地球的形状使得阳光直照热带地区,而在高纬度地区则以一定角度斜向照射,这使得热带、亚热带等低纬度地区所吸收的阳光远远超过50%。结果使得热带地区被过分加热,而极地地区则吸收较少的热量。

  但是,如果控制气候的仅仅是太阳的辐射,那么,赤道地区的过分加热应使该地区变得更热,而极地地区冬季光照的缺失则会使它变得更冷。因此,必须还有其他一些过程在起作用。其中一个明显的过程就是活动的流体(特别是大气和海洋)使得热量围绕地球不停地发生转换。

  热空气在热带地区上升,然后向上、向外迁移至更冷的区域,最后在数千千米之外下沉到极地地区。伴随着热空气的运动,出现一股与其并列或位于其下方的流向赤道的回流。这种循环被称为哈得莱环流(Hadley Cell)。地球是一个旋转的球体,这一事实将使空气的流动轨道发生偏斜,这又使问题进一步复杂化。

  如果你借助一团空气旅行,首先向L,然后向极地移动,在北半球,你的运行路线将向有偏转;而在南半球,你的运行路线将向左偏转。事实上你本身的轨迹并没有发生偏转,只是相对你底下旋转着的地球来说,你的轨道才显示出偏转。北半球的旋风是逆时针旋转,南半球的旋风则是顺时针旋转,也是由于这一原因。旋风中心的气压要低于其边缘的气压。这样,涌向中心低气压区的气流在北半球向右偏转(逆时针),在南半球则向左偏转。卫星照片上这些风暴的螺旋型形状,就源自于这些偏转和风掠过地表所引起的摩擦力的联合效应。加斯帕尔·德·科里奥利(Gaspar de Coriolis)数世纪以前,即在一个数学方程中描述了这一偏转现象,因此它又被称之为科里奥利效应。由于科里奥利力使得热带地区上升的热空气发生偏转,在南、北半球的低纬地区出现的是西风(即风从西边吹来)。

  大气圈内任何两地的温差产生了风。这种温差反过来还产生了密度和压力的差异,从而导致空气上升、风等现象的出现。急流在夏季相对较弱,但它在冬季则要强得多,这是由于在冬季虽然极地气温下降,但热带地区的气温相对来说终年保持温热。因此,在冬季,高纬和低纬地区之间的温差达到最大,哈得莱环流更强,更多的空气和热量由热带传送到两极,循环更加活跃,急流更加多变,且更靠近赤道的位置。

  当大规模的环极地风相对于旋转的地球达到一定的速度时,它们将变得不稳定。如果急流不稳定,它们将分裂成高压和低压涡流,后两者也被称为气候系统。大气遵循质量、动量及能量守恒的物理规律,可以用一组方程来表达这些规律,这些方程的解可以用来对运动着的气候系统的行为进行数学模拟,而这正是理查森在20世纪20年代试图引进的革命性方案。这些模拟解释了为什么中纬度地区的气候模式通常每隔数天就发生变化,而热带地区(有时包括中纬度地区)的气候模式有时可以连续数月保持稳定。

  急流的位置对局部的或区域的气候条件来说至关重要,因为它控制着风暴的形成,并分隔热带气团与极地气团。

  你肯定听说过非洲、南美洲及亚洲的季风(在北美洲则有一相对较弱的季风)。从冬季到夏季,海水表面温度只有少数几度的变化,这是由于浩瀚的海洋也是一个巨大的聚热体,它拥有科学家们所指的巨大的赌热能力(或热容)。陆地就不同了,由于其热容要小得多,其温度在季节之间可以出现数十度的变化。因此,相对于各自的周围地区,亚洲、非洲及南美洲大陆的中央部位的温度,在夏季真的升高了。被加热的空气在陆地上升。与此相伴,来自海洋的充满了水分的空气吹来填补热空气上升所留下的空间。其结果就是夏季风的出现:它带来的降雨维持了这些地区的自然和人类的生态系统。

  海洋温度的另一个常见模式是美洲大陆西海岸外侧的上升冷水流。其成因是当风掠过海面时,两者之间的摩擦产生了水流。沿着北美西海岸,通常来自西北方向的风似乎在将海水挤向海滨。但由于海洋中科里奥利力的作用,实际上发生的是北半球的海流发生向右的偏转。也就是说,来自西北方向的风,在北半球将引起海流的向右偏转,从而实际上导致海水离开西海岸。随着表层海水向西南方向发生偏转(亦即偏离海岸),来自深部冰冷得多的水体就顶替上来。这就是为什么人们甚至在仲夏的加利福尼亚海边游泳时,仍需穿紧身保暖潜水服的原因。这种上升水流含有丰富的营养成分,因此它支持了丰富多彩的海洋生态系统。

  除了季风雨及北美洲和南美洲海岸外的上升冷水流以外,气候学家和海洋学家们还在研究一种叫厄尔尼诺(E Ni5O)的现象所产生的效应,厄尔尼诺的字面意思是“孩子”,它指的是基督孩子,它是一种在圣诞节期间最为常见的周期性现象。每隔数年,与赤道太平洋地区水体的强烈来回晃动有关的大气风和海洋内部波浪,促使秘鲁海岸外的海水出奇的热,而在热带太平洋的西端则出现冷水。秘鲁海岸外的热海水也使大气圈得到了加热。加热空气的上升,使得在上升冷水流地区正常情况下应该出现的空气下沉趋势,发生了逆转。1983年和1995年的两个冬季就是极好的例子。东太平洋海区的热表层水改变了降雨模式,并使风暴向南进入加利福尼亚,引起该地区的洪水。此外,这种降雨模式的变化又会引起海水表层温度方面的反馈,从而构成海一气相互作用的一系列过程的一部分。改变东热带太平洋海区正常情况下的上升冷水流的趋势,不仅导致了秘鲁骤雨的出现,而且还引起澳大利亚的干旱乃至新几内亚的火灾,因为后者在正常情况下经历的是潮湿的雨林气候。此外,厄尔尼诺还产生一些全球性的影响。正常循环模式和厄尔尼诺循环模式之间的摆动就是所谓的南方涛动信号(Southern oscilla-tion signal),一般情况下它每隔五年左右发生一次,但从1990年至1995年,厄尔尼诺现象一直出现着,某些人称之为“死不了的厄尔尼诺”。这种情况只是一种偶然情况,还是一种我们将不得不与之为伴的气候变化?大气、海洋的电脑模型以及海一气耦合模型,正在开始对这些因素进行成功的模拟,这是了解诸如温室气体不断增加等全球变化,是否还将影响厄尔尼诺这一重要现象的一个前提条件。迄今为止,虽然人们对持续的厄尔尼诺这一奇特现象所产生的后果有一较清晰的认识,但其成因问题仍有待解决。

  内因还是外因

  在谈及气候变化的原因时,我曾指出需要

返回目录 上一页 下一页 回到顶部 0 1

你可能喜欢的