科学研究纲领方法论 作者:伊.拉卡托斯兰征译-第10章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
科学研究纲领相互竞争的观点,使我们碰到这样一个问题:怎样淘汰研究纲领?前面的考虑使我们知道,退化的问题转换同某种老式的“反驳”或库恩的“危机”一样,不是淘汰一个研究纲领的充分理由。能否有任何客观的(而不是社会心理学的)理由来拒斥一个纲领,即淘汰它的硬核及其建立保护带的钢领呢?我们的回答大致是,如果一个竞争的研究纲领说明了其对手先前的成功,通过进一步表现出启发力而胜过了其对手,便提供了这样一个客观的理由。
然而,衡量“启发力”的标准大大依赖于我们怎样解释“事实的新颖”。一直到现在我们都假设,一个新理论是否预测了新颖事实是立即可以确定的。然而,经常是只有过了很长时间之后,才能看到一个事实命题的新颖。为了证明这一点,我先从一个例子入手。
玻尔的理论逻辑地蕴涵着巴耳末的氢谱线公式作为一个推论。这是不是一个新颖事实?人们可能倾向于否认,因为巴耳末的公式毕竟是人人皆知的。但这只对了一半。巴耳末只“观察”到B1:即氢谱线服从巴耳末公式。玻尔预见了B2:即氢的电子不同轨道上的能级差服从巴耳未公式。现在人们可能说B1已经包括了B2的一切纯“观察”内容。但这样说。预先假定,有一个不受理论污染、不受理论变化影响的纯“观察层”。事实上,人们接受B1只是因为巴耳末所应用的光学、化学及其他理论业经充分证认并被接受为解释性理论;而这些理论随时都可能受到质疑。人们也许会争辩说,我们甚至可以“清除”掉B1的理论预设,而得到巴耳末所真正“观察”到的东西,将其表达成一个更有节制的断言B0:在某些明确限定的条件下(或在一“受控实验”的过程中),某些放电管中发出的谱线服从巴耳末公式。但波普尔的一些论证表明,按这种方式,我们永远不能达到任何确凿“观察的”最底层,要证明B0中涉及了“观察”理论是很容易的。另一方面,假定玻尔纲领经过长期的进步发展,已经表明了其启发力,那么,它的硬核本身就会成为充分证认的,并因而获得“观察”理论或解释性理论的资格。但这样;B2就不会被看作只是对B1重新进行理论解释,其本身就有资格被看作是新事实。
这些考虑又强调了我们评价中的事后之明鉴的成份,并使我们的标准进一步放宽了。一个刚刚参加竞争的新研究纲领可通过以新颖的方式说明“旧事实”开始,但可能需要非常长的时间才能看到它产生出“真正新颖的”事实。例如,热动说似乎比现象论的成果落后了几十年,一直到1905年,关于布朗运动的爱因斯坦-斯莫罗科夫斯基理论才最后超过了现象论。此后,先前看来似乎是对旧事实(关于热的旧事实,等等)的推测性的重新解释,变成了新事实(关于原子的事实)的发现。
所有这一切说明,我们不应仅仅由于一个年轻的研究纲领还没有超过其强大的对手而抛弃它。如果没有其对手它会构成一个进步的问题转换,那么我们就不应放弃它。我们无疑应该把经重新解释的事实看作新事实,而不管业余事实收集者的傲慢的领先权要求。只要可以把一个年轻的研究纲领合理重建为一个进步的问题转换,就应暂保护它免受已经确立的强大
的对手的进攻。
这些考虑总的来讲强调了方法论的宽容的重要性,而仍然没有回答怎样淘汰研究纲领的问题。读者甚至可能怀疑,这样多地强调可错性,会使我们的标准放宽(更确切地说,是软化)到这样的程度,使我们站到激进怀疑论一边。结果,甚至著名的“判决性实验”也不会有任何力量来推翻研究纲领;一切都可容许了。
但这种怀疑是没有根据的。在研究纲领内部,相继的变体之间常有“小判决性实验”。实验家很容易在第n个与第(n+1)个科学变体之间作出“决定”,因为第(n+1)个变体不仅同第n个相矛盾,而且还超过了它。如果根据同一个纲领和同一些已经充分证认的观察理论,第(n+1)个变体具有更多的已经证认的内容,那么淘汰便是相对经常的事情(只是相对地经常,因为即使这儿,淘汰的决定也可能遭到上诉)。上诉程序有时也很容易:在许多情况下,受到挑战的观察理论远不是已被充分证认的,事实上是没有明确表达出来的朴素的“隐蔽的”假设,只有受到挑战才暴露了这一隐蔽假设的存在,使其得以阐明、检验、以至被推翻。然而,观察理论本身常常被结合在某个研究纲领中,这样,上诉程序便会导致两个研究纲领之间的冲突:在这种情况下,我们可能需要一个“大判决性实验”。
当两个研究纲领竞争时,它们的第一个“理想的”模型一般是关于同一领域的不同方面的(例如,牛顿的半微粒光学的第一个模型描述了光的折射,而惠更斯的波动光学的第一个模型描述了光的干涉)。随着相互竞争的研究纲领的扩展,它们会逐渐侵犯对方的领域。这样,第一个纲领的第n个变体就会同第二个纲领的第m个变体明显地、戏剧性地矛盾起来。通过反复实验,结果第一个纲领在这次战斗中失败了,而第二个纲领得胜了。但这场战争并没有完结:任何研究纲领都容许有这样几次失败。它只需要产生出一个第(n十1)个(或第(n+k)个)增加内容的变体,并证实它的某些新颖内容,便可东山再起。
如果经过持续的努力,这种东山再起仍不实现,那么战争便输掉了,而原先的实验则被事后之明鉴认为是“判决性的”。不过,尤其是假如在战斗中失败的纲领是一个年轻的发展迅速的纲领,假如我们决定充分相信它的“前科学”的成功,所谓的判决性实验便会随着它的前进一个接一个地消失。即使在战斗中失败的是一个老的、已经确立、“已经疲劳”、接近其“自然饱和点”的纲领,也可能以巧妙的增加内容的革新继续进行长时间的抵抗,即使这些革新没有得到经验的成功。凡是被赋有天才和想象力的科学家们所支持的研究纲领是很难被打败的。或者说,失败纳领的顽固捍卫者可能对实验作出特设的说明,或狡猾地、特设地把胜利的纲领“还原”为失败的纲领。但是,我们应当把这种努力作为非科学的而加以拒斥。
我们的考虑说明了为什么判决性实验在几十年之后才被看成是判决性实验。牛顿声称开普勒椭圆支持他而反对笛卡儿,但是在大约一百年以后,人们才普遍承认开普勒椭圆是支持牛顿、反对笛卡儿的判决性证据。水星近日点的反常行为是牛顿纲领中许多尚未解决的困难之一,人们知道这一点已有好几十年,但只有爱因斯坦的理论更好地说明了这个事实,才把这个阴沉沉的反常变成了对牛顿研究纲领的一个光辉的“反驳”。杨声称他在1802年的双隙实验是光学的微粒纲领与波动纲领之间的判决性实验;但只是在菲涅尔大大“进步地”发展了波动纲领,而且牛顿论者显然无法同它的启发力相抗衡之后很久,这一声称才得到承认。只有经过两个竞争纲领长期的不平衡发展之后,为人所知了几十年的反常才能得到反驳这一尊称,而实验才能得到“判决性实验”的尊称。布朗运动在战场上战斗了近一个世纪才被认为击败了现象论研究纲领,使战争转而有利于原子论者。迈克耳孙对巴耳末线系的“反驳”一直被人忽视,直到一代人以后,玻尔胜利的研究纲领才支持了它。
详细地讨论某些只有回过头来看时才能明显看出其“判决”性质的实验例子可能是值得的。首先,我想讨论著名的1887年迈克耳孙-莫雷实验,这一实验据说证伪了以太理论,并“导致了相对论”;然后讨论卢默-普林希姆实验,这些实验据说证伪了古典辐射理论并“导致了量子论”。我最后想讨论的一项实验曾被当时许多物理学家认为是反对守恒定律的,然而事实上它最终最成功地证认了守恒定律。
(
d1)迈克耳孙-莫雷实验
迈克耳孙1881年访问赫尔姆霍茨的柏林研究所期间,设计了一项实验来检验菲涅尔和斯托克司关于地球运动对以太的影响的矛盾理论。根据菲涅尔的理论,地球运动时穿过静止的以太,但地球内部的以太部分地被地球所带动。因此,菲涅尔的理论意味着地球外部的以太速度相对于地球来说是正的(也就是说,菲涅尔的理论暗示了“以太风”的存在)。根据斯托克司的理论,以太为地球所拖拽,在地球的直接表面上,以太的速度同地球的速度相等:因此以太的相对速度为零(也就是说,地球表面没有以太风)。斯托克司最初认为两个理论在观察上是一致的;例如,通过适当的辅助假设,两个理论都说明了光行差。但迈克耳孙声称,他在1881年的实验是两个理论之间的判决性实验,这一实验证明了斯托克司的理论。他断定地球相对于以太的速度比菲涅尔的理论所说的速度要小得多。他甚室断言说,根据他的实验,“必然的结论是这个[静止以太的]假说是错误的。这一结论与关于先行差现象的说明是直接矛盾的,该说明……预先假定地球穿过以太,以太保持静止。”正象经常发生的那样,实验家迈克耳孙当时从一个理论家那里得到一个教训。当时主要的理论物理学家洛伦兹在迈克耳孙后来描绘为“对整个实验的……一个非常彻底的分析”中,证明迈克耳孙“错误地解释了”事实,他所观察到的东西事实上与静止以太的假说并不矛盾。洛伦兹证明迈克耳孙的计算是错误的;菲涅尔的理论只预测了迈克耳孙所计算的结果的一半。洛伦兹断定说,迈克耳孙的实验没有反驳菲涅尔的理论,当然也没有证明斯托克司的理论。洛伦兹继而证明,斯托克司的理论是矛盾的:它假定地球表面的以太对于地球是静止的,而又要求相对速度具有势能;然而这两个条件是互不相容的。但是即使迈克耳孙真地反驳了静止以太的一个理论,纲领还是未被触动:人们可以轻易地制定出以太纲领的其他几种理论,以预测以太风的非常微小的值,而洛伦兹立即就提出了一个这样的理论。这一理论是可以检验的,洛伦兹骄傲地让它接受实验的判决。迈克耳孙和莫雷一起接受了挑战。这一次地球对以太的相对速度似乎又是零,同洛伦兹的理论相矛盾。但这一次迈克耳孙在解释他的材料时比较谨慎了,他甚至想到整个太阳系有可能在与地球相反的方向运动;因此他决定“每隔三个月”重复一次实验,“从而避免一切不确定性”。迈克耳孙在他的第二篇论文中没有再谈论“必然的结论”和“直接的矛盾”,他只是认为,根据他的实验来看,“如果真的存在着传光的以太和地球之间的相对运动,那么从所有先前的实验看来相当肯定,这种运动一定是很小的,小到足以反驳菲涅尔对光行差的说明。”因此,在这篇论文中,迈克耳孙仍然宣称反驳了菲涅尔的理论(以及洛伦兹的新理论);但只字未提关于反驳了一般的“静止以太理论”的1881年的旧的断言。(实际上,他相信要想反驳静止以太理论,他必须在很高的高度上,“例如,在一座孤山顶峰上”,检验以太风。)
然而,某些以太理论家(如开尔芬)不信任迈克耳孙的“实验技巧”,洛伦兹指出,尽管迈克耳孙作了朴素的断言,但是就连他的新实验也“未能为它所要解决的问题提供任何证据”。人们完全可以把菲涅尔的理论看成解释性理论,它解释事实,而不为事实所反驳。然后,洛伦兹证明,“迈克耳孙…莫雷实验的意义在于它可以教给我们某些关于量纲变化的事情”:物体的量钢受它们通过以太的运动的影响。洛伦兹以极大的独创性造成了菲涅尔纲领中这一“创造性的转换”,从而声称“消除了菲涅尔理论与迈克耳孙实验结果之间的矛盾”。但他承认,“由于我们完全不知道分子力的性质,要检验这一假说是不可能的”:至少暂时它不能预测任何新颖事实。
同时,在1897年,迈克耳孙进行了他长期计划的在山顶上测量以太风速度的实验,但他没有发现任何以太风。由于他早先认为他已证明了斯托克司的理论,该理论预测在较高的高度上有以太风,他现在不知所措了。如果斯托克司的理论仍然是正确的,那么以太速度的梯度必定是很小的。迈克耳孙只得断言说,“地球对以太的影响延伸到相当于地球直径的距离上”。他认为这是一个“不大可能的”结果,并断定1887年他从自己的实验中得出了错误的结论:必须拒斥的应该是斯托克司的理论,而菲涅尔的理论必须予以接受。他决定要接受任何可以拯救菲涅尔理论的合理的辅助假说,包括洛伦兹1892年的理论。现在他似乎喜欢菲茨杰拉德…洛伦兹的收缩理论,到了1904年,他在卡斯的同事们试图发现这种收缩是否因材料的不同而改变。
多数物理学家试图在以太纲领的框框内解释迈克耳孙的实验,爱因斯坦都没注意迈克耳孙、菲茨杰拉德和洛伦兹,他主要受马赫对牛顿力学所作批评的激励,制定了一个新的进步的研究纲领。这个新纲领不仅“预测”并说明了迈克耳孙…莫雷实验的结果,而且还预测了一系列以前未曾梦想过的事实,这些事实得到了戏剧性的证认。只是到了这时,即二十五年之后,迈克耳孙…莫雷实验才开始被看成“科学史上最伟大的否定实验”。但这一点是不会被立即看到的。即使实验是否定的,当时也不清楚究竟否定了什么?而且,迈克耳孙在1881年认为他的实验也是肯定的:他坚持说他反驳了菲涅尔的理论,但证实了斯托克司的理论。迈克耳孙本人,然后是菲茨杰拉德和洛伦兹,还在以太纲领之内肯定地说明了这一实验结果。同一切实验结果一样,它对旧纲领的否定性只是后来才得以确立的,这是通过慢慢积累起来的在退化的旧钢领内部解释该实验的特设尝试、通过逐渐确立一个新的进步的胜利纲领从而把该实验变成一个肯定的证例而确立的。但永远也不能合理地排除恢复“退化的”旧纲领的某一部分的可能性。
只有通过极端困难而无限漫长的过程才能确定一个研究纲领取代了其对手;过于鲁莽地使用“判决性实验”这一术语是不明智的。即使人们认为一个研究纲领被原有的纲领淘汰了,它也不是被某个“判决性”实验淘汰的;即使后来把握不大地称这样一种实验为判决性实验,如果这个旧纲领没有一个有力的进步高潮,也是无法阻挡新纲领的。迈克耳孙-莫雷实验的否定性及重要性主要在于该实验所有力支持的新研究纲领中的进步转换,该实验的“伟大”不过反映了所涉及到的两个纲领的伟大。
仔细分析一下气运渐衰的以太理论中的竞争转换,是很有趣的。但是在朴素证伪主义的影响下,迈克耳孙的“判决性实验”之后的以太理论最有趣的退化阶段被多数爱因斯坦论者干脆忽视了。他们相信迈克耳孙-莫雷实验单枪匹马地打败了以太理论,以太理论的顽固性只不过是由于蒙昧主义的保守主义。另一方面,反爱因斯坦论者也没有批判地检查迈克耳孙之后这一时期的以太理论,他们认为以太理论根本未受任何挫折:爱因斯坦理论中的长处在洛伦兹的以太理论中本质上都有,爱因斯坦的胜利不过是由于实证主义的风尚。但事实上