科学史及与哲学和宗教的关系 作者:w.c.丹皮尔-第36章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
牛顿的第二困难为弗雷内尔所克服。胡克偶尔提到光波的颤动,可能与光线的方向相正交,弗雷内尔指出这个提示说明一线光在各方向上可能有不同的性质。如果我们看看一个前进光的波阵面,它的线性颤动非上下的即左右的。这样的线颤动应产生所谓平面偏振光。如果一块晶体在一位置上只能让一个方向的颤动通过,第二块同样的晶体沿着晶轴旋转90度之后,必将通过第一晶体而来的光完全遮断。这正是光线通过冰晶石的现象。
弗雷内尔利用数学将光的波动说发展到很圆满的境界。虽然还有一些困难,但大体说来,他的完善的学说与观测到的事实异常符合。他和他以后的人如格林、麦克卡拉(MacCullagh)柯西(Cauchy)、斯托克斯(Stokes)、格莱兹布鲁克(Glazebrook)等人经历一个世纪,才把古典的光的波动说确立起来。
如果光波是与其前进的方向成正交的,则其媒质必须具有使这样的波能在其中传播的结构。气体与液体都不能具有这种结构。因此,如果光是机械式的波动,则传光的以太必定有与固体类似的性质:即它必定带有刚性。这就是把以太看做是有弹性的固体的许多学说的开端。怎样才能把光的媒质所必需的这种性质和行星的运动没有遇到可观的阻力的事实调和起来呢?十九世纪头七十年的许多聪明物理学家为此绞尽了脑汁。为了解释这种必要的刚性,后来甚至有人设想以太具有回转仪式的旋转运动。
正如爱因斯坦所指出的,光的波动说的成功,在牛顿物理学中打开了第一道缺口,虽然当时没人知道这个事实。牛顿把光看做是在空间中运行的微粒的学说,和他的别的哲学很相配合,可是这些微粒为什么只以一个不变的速度运动,很难了解。但等到人们开始把光看做是波动的时候,再要相信一切实在的东西都是由在绝对空间里运动的微粒所组成的,就已经不可能了。以太是为了保存机械观点而臆造出来的,只要可以把光看做是在类似刚体的煤质中传播的机械波动,以太就完成了这个任务,可是,如果假定以太无所不在,它已经在某种意义上与空间本身合而为一了。但法拉第指出空间也有电和磁的性质,到麦克斯韦证明光是电磁波时,以太就不必一定是机械的了。
光的波动说揭开了现今所谓场物理学的第一章。由法拉第和麦克斯韦的工作写成第二章,把光与电磁联系起来。在第三章里,爱因斯坦用几何学来解释万有引力。也许有一天,万有引力可能和光与电磁波在更大的综合里联系起来。爱丁顿就一直在作这样的努力。
电磁感应
由静电的感应而生的静电荷以及磁石对于软铁的类似作用,使早期实验者想到利用伏特电池发出的电流也许可得同样的效果。例如法拉第就用两根绝缘线按螺旋的形式缠绕在同一根圆木筒上,但是,当他使强电流不断地通过一根螺旋线时,他在另一螺旋线里的电流计上,没有发现有什么偏转。
他的第一个成功的实验,在电学史上打开了一个新纪元。1831年11月24日,他向皇家学会这样描写这次实验
把一根203呎长的铜丝缠在一个大木块上,再把一根长203呎的同样的钢丝缠绕在前一线圈每转的中间,两线间用绝缘线隔开,不让金属有一点接触。一根螺旋线上连接有一个电流计,另一根螺旋线则连接在一套电池组上,这电池组有100对极版,每版四时见方,而且是用双层铜版制造的,充分地充了电。当电路刚接通时,电流计上发生突然的极微小的效应;当电路忽断的时候,也发生同样的微弱效应。但当伏特电流不断地通过一根螺旋线时,电流计上没有什么表现,而在另一螺旋线上也没有类似感应的效应,虽然整个螺旋线的发热以及碳极上的放电,证明电池组的活动力是很大的。
用120对极版的电池组来重做这个实验,也未发现有别的效应,但从这两次实验,我们查明了一个事实:当电路忽通时,电流计指针的微小偏转常循一个方向;而当电路忽断时,同样的微小偏转则循另一方向。
到现在为止,我用磁石所得的结果,使我相信通过一根导线的电池电流。实际上在另一导线上因感应而产生了同样的电流,但它只出现于一瞬间。它更带有普通来顿瓶的电震产生的电浪的性质,而不象从伏特电池组而来的电流;所以它能使一根钢针磁化,而很难影响电流计。
这个预期的结果竟得到了证明。因为用缠绕在玻璃管上的中立的小螺旋线来代替电流计,又在这个螺旋线里安装一根钢针,再如前把感应线圈和电池组连结起来,在电路未断以前将钢针取出,我们发现它已经磁化了。
如先通了电,然后再把一根不曾磁化的钢针安放在小螺旋线内,最后再把电路切断,我们发现钢针的磁化度表面上和以前一样,但是它的两极却与以前相反。
用现今的灵敏电流计,我们很容易重做法拉第的实验。只须用一个伏特电池作为原电流,而使原电路与副电路作相对的移动,或用一个永磁铁和一个与电流计相联的线圈作相对移动,都可以证明有同样的暂时电流的发生。法拉第电磁感应的发现,为后来工业的大发展奠定了基础。差不多一切实用上重要的电力机器,都是根据感应电流的原理制成的。
电磁力场
安培发现电磁定律,用数学公式把它表达出来以后,就感到满足,没有再去探索这种力靠什么机制传播了。但承继他的法拉第,不是数学家,对于中介空间或电磁力场的物理性质与状态特别感到兴趣。如果把一块纸版放在磁捧之上,再拿一些铁屑散布在纸版上,这些铁屑将集合成许多线,表明磁力是沿这些线而起作用的。法拉第想象这样的力线或力管将磁极或电荷连结起来,真的存在于磁场或电场之中,它们也许是极化了的质点所组成的链。如果它们象橡皮条那样,处在紧张状态之下,向纵的方向拉长,而向横的方向压缩,那么它们会在煤质中伸展出去,而将磁极或电荷向一起拉拢,这样可以解释吸引的现象。不论实际是否这样,用法拉第的力线,来表示绝缘的媒质或电场中的应力与应变的现象,实在是一个便利的方法。
法拉第又从别的方面研究了电介质的问题。他发现在导体周围的空气为虫胶或硫一类绝缘体所代替时,导体的静电容量,即在一定电位或电压下它能负荷的电量,便有增加;这个增加的比例他叫做那个绝缘体的电容率。
法拉第的见解超过了他的时代,而且他用来表达这些见解的术语,也不是当时所熟习的。三十年后,麦克斯韦将这些见解翻译成数学的公式,并发展为电磁波的理论时,它们的重要性才被人认识(在英国立刻就被人认识,在其他国家比较慢)。这样,法拉第就奠定了实用电学的三大部门,即电化学、电磁感应与电磁波的基础。而且他坚决主张电磁力场具有极大重要性,这也是现代场物理学理论有关电的方面的历史起点。
电磁单位
我们得感谢两位德国的数学物理学家高斯(1777-1855年)与韦伯(W.E.Weber,1804-1891年),因为他们发明了一套科学的磁与电的单位。这种单位不是根据和它们同类的量任意制定的,而是根据长度、质量与时间三种基本单位而制定的。
1839年,高斯发表了他的《按照距离平方反比而吸引的力的一般理论》一书。电荷、磁极以及万有引力都适合这个关系。这样,就可以给单位强度的电荷或磁极下这样的定义:同相等的类似电荷或磁极在空气中相距一单位(1厘米),而以一单位的力(1达因)对该电荷或磁极加以排斥的电荷或磁极。如果用另一介质来代替空气,这个力就按一定的比例减少,他用k来代表电力,u代表磁力。k就是法拉第的电容率,在这里成为介质常数,u这个量后来叫做介质的磁导率。在这个基础上高斯建立了一个宏伟的数学演绎的大厦。
安培与韦伯由实验证明带电流的线圈,与同大小同形式的磁铁的作用相同,一个圆圈电流与一个在正交向上磁化的圆盘等效,所以一面是指北极,另一面是指南极的。这样单位电流可定义为和单位磁力的磁盘等效的电流。根据这个定义,可以用数学方法导出如下结果:圆圈电流中心的磁场(即作用于单位磁极的力)等于2xc/r,这里c是电流的强度,r是圆圈的半径,这个算式自然与由安培公式所导出的结果相合。所以只要将一颗小磁针悬挂在一大圆线圈的中心(这种装置就是现今所说的正切电流计),再于电流通过线圈时,观测磁针的偏转,我们就可以以绝对单位或厘米一克…秒(C.G.S.)单位去测量电流。常用的电流单位(安培)按规定是上面所说的单位的十分之一,不过,多年以来为了实际应用与测量便利,一直是根据电解时析出银的重量来做电流单位的标准,如上面所谈到的。现在又有人提议重回到理论的定义上去。
热与能量守恒
在十八世纪和十九世纪中,由于蒸汽机的发展,热学成为一门具有非常重要的实际意义的科学,这反过来引起人们对于热学理论的重新注意。
我们以前说过,按照热质说,热是一种不可秤量的流体。这个学说在启发和解释测量热量的实验方面起过有益的作用。但作为物理的解释,分子激动说更合于敏锐的自然哲学家如波义耳和牛顿的口味。1738年,别尔努利(Daniel Bernouilli)指出,如果将气体想象为向四面八方运动的分子,那末这些分子对盛器的壁的冲击,便可解释气体的压力,这压力又必因气体被压缩与温度的增高而按比例增加,正如实验所要求的那样。
热质论者解释摩擦生热的现象时,假定摩擦生出的屑末或摩擦后最终态的主要物质的比热比摩擦以前的初态物质要小一些,因而热是被逼出而表现于外的。但在1798年,美国人汤普逊(Benja…min Thompson后来在巴伐利亚成了朗福德伯爵Count Rumforo)用钻炮膛的实验证明发热的量大致与所作的功的总量成正比,而与削片的量无关。可是热的流体说仍然存在了半个世纪。
不过,到1840年,人们就开始了解自然界里各种能量至少有一些是可以互相变换的。1842年,迈尔(J.R.Mayer)主张由热变功或由功变热均有可能。迈尔在空气被压缩的时候,所有的功都表现为热的假定下,算出了热的机械当量的数值。同年,英国裁判官兼科学家、以发明一种伏特电池著名的格罗夫(W.R.Grove)爵士,在一次讲演中说明了自然间能量相互关系的观念,并在1846年出版一本书《物理力的相互关系》中,阐述了这个观念。这本书和1847年德国大生理学家、物理学家与数学家赫尔姆霍茨(H。L.F vonHelmholtz,1821-1894年)根据独立的研究写成的《论力的守恒》,是一般地论述现今所谓的“能量守恒”原理的最早著作。
1840至1850年间,焦耳(J。P。Joule,1818…1889年)以实验方法测量了用电和机械功所生的热量。他先证明电流通过导线所生的热量,与导线的电阻和电流的强度的平方成正比例。他压水通过窄管或压缩一定量的空气或使轮翼转动于液体中,而使液体生热。他发现不管用什么方式作功,同量的功常得同量的热,根据这个等值的原理,他断定热是能量的一种形式。虽是这样,“经过多年之后,科学界领袖才开始赞同这种看法”,虽然斯托克斯告诉威廉·汤姆生(William Thomson):“他宁愿做焦耳的一个信徒”。1853年,赫尔姆霍茨访问英国时就已经看见许多人对这个科学问题发生兴趣,他到法国时又看见雷尼奥(Regnaull)已经采取了新的观点。焦耳的最后结果表明:使一磅水在华氏55至60度之间温度升高1度所需要消耗的功为772呎磅。后来实验证明比较接近精确的数字是778呎磅。
焦耳用热与功等价的明确的实验结果,给予格罗夫所主张的“力的相互关系”、和赫尔姆霍茨所倡导的“力的守恒”的观念以有力的支持。这个观念就这样发展成为物理学上以“能量守恒”得名的确定原理。能量作为一个确切的物理量,在那时的科学上还是新东西。这个名词所表示的观念,曾经用不准确的、具有双重意义的“力”一词来表达。托马斯·杨指出,这样就把“能量”和“力”混淆起来了。能量可以定义为“作功的力”,而且如果两者的转换是完全的,能量便可以用所作的功来测度。“能量”一词用于这种专门的意义应归功于兰金(Rankine)与汤姆生。汤姆生采用了托马斯·杨所提出的把力和能量区别开来的主张。
焦耳的实验证明在他所研究过的情况里,一个体系中能的总量是守恒的,功所耗失之量,即作为热而出现。一般的证据引导我们把这个结果推广到其他的变化上去,例如机械能变为电能,或化学能变为动物热之类。直到近年为止,一切已知的事实都适合于这句话:在一个孤立的体系中,总的能量是守恒的。
这样确立的能量守恒原理可以和较早的质量守恒原理相媲美。牛顿的动力学的基础就在于这样一种认识:有一个量,--为了便利起见,称为一个物体的质量——经过一切运动而不变。在化学家手里,天秤证明:这个原理在化学变化中也一样地有效。在空气中燃烧的物体,它的质量并不消失。如果把所产生的物质收集起来,它们的总量必等于原物体与所耗的空气的份量的总和。
能量也是这样的:质量以外的另一个量出现在我们的意识里,主要是因为它经过一系列的转换仍然不变。我们觉得承认这个量的存在,把它当作一个科学的概念,并且给它起一个名字,是有种种便利的。我们称它为能或能量,用所作的动量或发生的热量来测量它的变化,并且费了许多工夫,经过许多疑惑,才发现它的守恒性。
十九世纪的物理学,没有一个方法可以创造或毁灭质与能。二十世纪出现了一些迹象,说明质本身就是能的一种形式,从质的形式转变为能的形式并非不可能的事,但直到近些年为止,质与能是截然不同的。
能量守恒的原则,约在1853年为汤姆森(Julius Thomsen)首先应用于化学。他认识到在化学反应里所发出的热是这个系统的合能量在反应前后的差异的衡量尺度。既然在一个闭合的系统中,最后的能量和最初的能量必然是相同的,因此,在某些情况下,我们就有可能预言这个系统的最后状态,而不必顾及中间的步骤,也就是一步跳到一个物理问题的解答,而不必探究达到目标的过程,象惠更斯对于某些比较有限的力学问题所做过的那样。由于这个实际的用途和它固有的意义,能量守恒原理可以看做是人类心灵的重大成就之一。
但是它有自己的哲学上的危险性。由于质量守恒原理和能量守恒原理在当时可以研究的一切情况下无不有效,这两个原理就很容易被引伸为普遍的定律。质量成了永恒而不灭的;宇宙里的能量,在一切情形下及一切时间内都成了守恒而不变的。这些原理不再是引导人们在知识领域内凭借经验逐渐前进的万无一失的响导,而成了有效性可疑的重要哲学教条了。
气体运动说
1845年,瓦特斯顿(J.J.Waterston)在