爱爱小说网 > 体育电子书 > 科学发现的逻辑 作者:波珀 >

第22章

科学发现的逻辑 作者:波珀-第22章

小说: 科学发现的逻辑 作者:波珀 字数: 每页3500字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



种关系;如果它们用这种方式解释,我将称它们为“统计学离散关系。”

  在我的统计学解释中,我迄今尚未提及测量;我仅提及物理选择。现在有必要澄清这两种概念之间的关系。

  我谈到物理选择或物理离析,就是指例如我们从粒子流中筛去除了通过狭孔△x,即通过粒子的位置在△x域的一切粒子。并且在谈到属于如此被分离出的那粒子束的粒子时,我要说它们已根据它们的性质△x,被物理上或技术上选择了出来。惟有这种过程或它的结果,物理上或技术上被分离的粒子束,我才把它们描述为“物理选择”——与只是“精神的”或“想象的”选择加以区别,当我谈到已通过或将通过△p域的一切其他粒子类,即谈到一个更广泛的粒子类(它已经在物理上从这一更广泛的粒子类中被筛出)内的一个类时,我们就是作的物理选择。

  现在一切物理选择当然可被看作是一种测量,并且实际上也可这样使用。如果比方说,一束粒子通过筛去或排除一切没有通过某一位置域(“地点选择”)的那些粒子而被选择出来,那么我们认为这地点选择就是位置测量,因为我们由此知道粒子已经通过一定的位置(虽然它什么时候在那里,我们有时也许不知道,或只能从其他测量中知道)。另一方面,我们必不可把一切测量都看作为一种物理选择。例如一股飞向x的单色电子束。我们用一架Geiger计数器就能记录那些到达一定位置的电子。通过对计数器的作用之间的时间间隔,我们也可以测量空间间隔;也就是说,我们测量它们在作用那瞬间以前在x方向上的位置。但是在从事这些测量时,我们并未根据它们在x方向上的位置对粒子进行物理选择。(实际上这些测量一般得到的是在x方向上位置的完全随机的分布)。

  因此我们的统计学离散关系在其物理应用中得出了如下这一点。如果人们不管用什么手段试图获得一个尽可能均匀的粒子聚合体,那么这个尝试在离散关系上将碰到确定无疑的障碍。例如我们可以通过物理选择获得一个平面的单色射线——比方说等动量的电子束。但是如果我们尝试使这个电子聚合体更为均匀——也许通过排除其一部分--以便获得不仅具有同样动量,而且已经通过了确定位置域△x的某个狭缝的电子,那么我们就必然失败。我们之失败是因为根据粒子的位置所作的任何选择就是对系统的干扰,这种干扰将使动量成分Px的离散增加,因而使离散随缝的变窄而增加(与Heisenberg公式表示的定律相一致)。反之:如果我们有一束射线,使其通过一个缝,根据位置加以选择,如果我们试图使之成为“平行的”(或“平面的”)和单色的,那么我们就一定要破坏这种根据位置所作的选择,因为我们不能避免增加射线的宽度。(在理想情况下,——例如如果粒子的Px成分全都变成等于0——宽度就一定会成为无限的。)如果选择的均一性尽可能地增加(即尽Heisenberg公式所允许的,以致在这些公式中相等的符号成为有效),那么这种选择可称为纯例(a pure exam-ple)。

  我们用这种术语就可表述统计学离散关系如下:没有一种粒子聚合体比纯例更均一。

  到现在还没有加以充分考虑的是,从量子论基本方程式的解释中推导出Heisenberg公式的解释恰恰必须同从这些基本方程式中用数学推导出的Heisenberg公式一致。例如March已描述了正好相反的情况(前节已表明):在他的论述中,量子论的统计学解释呈现为Heisenberg对可达到的精密度所加限制的结果。另一方面,Weyl从波方程式——他用统计学术语解释的方程式——严格地推导出Heisenberg公式。然而他把Heisenberg公式——他刚从用统计学解释的前提中推导出这些公式——解释为对可达到的精密度的限制。并且他这样做不顾如下的事实:他注意到对公式的这种解释在某些方面同Born的统计学解释是背道而驰的。因为按照Weyl的意见,鉴于测不准关系,Born的解释应加以“校正”。“当一个粒子的位置和速度在每一个单个情况下被测定时,正好服从统计学规律,情况不仅如此。更确切地说,这些概念的意义本身取决于确定它们所需的测量;并且位置的精确测量剥夺了我们确定速度的可能性。”

  Weyl感觉到的Born的量子论统计学解释和Heisenberg对可达到的精密度的限制之间的矛盾的确存在着;但是这个矛盾比Weyl认为的更尖锐。不仅从用统计学解释的波方程式推导出对可达到的精密度的限制是不可能的,而且可能的实验和实际的实验结果都与Heisenberg的解释不一致,这个事实能够被认为是支持量子论统计学解释的一个决定性论据,一种判决性实验。

  76.通过倒转Heisenberg纲领排除形而上学因素的尝试及其应用

  如果我们从量子论特有的公式是概率假说并且因而是统计学陈述的假定开始。那么难以理解如何能从这种性质的统计学理论中演绎出禁止单个事件(也许除了概率等于1或等于0的情况下)。认为单个测量能同量子物理学的公式发生矛盾,在逻辑上似乎是站不住脚的;正如认为总有一天在一个形式上单称的概率陈述αPk=(β)=p(比方说“掷k为5的概率为1/6”)与下列两个陈述:kεβ(“这次掷实际上得5”)或0112。gif(“这次掷实际上没有得5”)之一之间可发现矛盾一样站不住脚。

  这些简单的考虑提供给我们反驳任何这些证明的手段,据说,这些证明是设计出来表明位置和动量的精确测量与量子论是矛盾的;或许设计出来表明单单假定任何这类测量在物理上是可能的,就必定导致理论内部的矛盾。因为任何这类证明必须利用应用于单个粒子的量子论考虑;这意味着它不得不利用形式上单称的概率陈述,而且意味着必定有可能把证明——可以说逐字地——翻译为统计学语言。如果我们这样做,那么我们就发现在认为是精密的单个测量与作统计学解释的量子论之间没有矛盾。在这些精密的测量和理论的某些形式上单称的概率陈述之间只有表面上的矛盾。

  但是,虽然说量子论排除精确的实验是错误的,然而说从量子论特有的公式——如对它们作统计学解释——中不可能推导出精确的单个预测仍是正确的。(我不把能量守恒定律或动量守恒定律列在量子论特有的公式中。)

  之所以如此是因为鉴于离散关系,我们必然不能用实验操纵系统(即用我们所说的物理选择)产生精确的初始条件。实验者的正常技术是要产生或建构初始条件,这是对的;并且这使从统计学离散关系中推导出这样一个定理——然而只适用于这种“建构性的”实验技术——:我们不可能从量子论中获得任何单个预测,只能获得频率预测。

  这个定理概括了我对Heisenberg(他在这里主要是遵循Bohr)讨论的所有那些想象实验的态度,目的是证明不可能作出他的测不准原理禁止的精确的测量。这一论点在所有情况下都是一样的:统计学离散使之不可能预测在测量操作后粒子的轨迹将会是什么。

  很可能我们对测不准原理的重新解释所得到的并不很多。因为即使Heisenberg大体上也不过断言我们的预测服从这个原理(正如我已试图证明的那样);并且由于在这个问题上我每一点都同意他,也许会认为我争论的只是字眼,不是实质问题。但是这很难说是对我的论证的公正评价。实际上我认为Heisenberg的观点和我的是正好对立的。这在下节将充分加以说明。同时我将尝试解决Heisenberg解释中固有的典型困难;并且我将努力弄清这些困难如何和为什么发生。

  首先我们必须考察如我们已看到的那样,使Heisenberg纲领遭到失败的那个困难。这就在那个形式体系中,出现位置加动量的精密陈述的困难;或换言之对轨迹(参阅第73节)作精确计算的困难,对这轨迹的物理实在性Heisenberg是必然要怀疑的,而其他人例如Schlick则干脆否认它。但是实验(a),(b)和(c)——参阅第73节——都能用统计学术语来解释。例如,组合(c),即测量位置后紧跟着测量动量,可以如下的实验实现。我们借助有一狭缝的光阑(diaphragm)根据位置选择一束射线(位置测量)。然后找们测量正从狭缝按一定方向传播的那些粒子的动量。(这第二次测量当然会使位置产生新的离散)。这两次实验加在一起将精密地测定所有那些属于第二次选择的粒子的轨迹,只要这个轨迹在两次测量之间:两次测量之间位置和动量都能精密计算。

  与诸要素精确一致的这些测量和计算,在Heisenberg的解释中被认为是多余的,而按照我对这个理论的解释则根本不是多余的。大家承认,它们不起初始条件或预测推导的基础的作用;但是它们是必不可少的:它们是检验我们的预测所必需的,我们的预测是统计预测。因为我们的统计离散关系所断言的是,当位置更为精确地测定时动量必定离散,反之亦然。这是一种不是可以检验、可以证伪的预测,如果我们不能借助于已描述的那类实验来测量和计算,那么在根据位置所作的任何选择后就会马上出现各种离散的动量。

  所以用统计学解释的理论,不仅不排除精确的单个测量的可能性,并且如果这些测量不可能,这个理论便是不可检验的,因而是“形而上学的”。因此,Heisenberg纲领的实现形而上学因素的清除在这里完成了,但用的是一种与他十分对立的方法。因为当他试图排除他认为不允许的量值(尽管不完全成功)时,我都把这种尝试倒过来,办法是证明正因为这些量值不是形而上学的,包含这些量值的形式体系是正确的。一旦我们放弃了Heisenberg对可达到的精密度所加的限制中包含的教条,就不再有任何理由,为什么我们应该怀疑这些量值的物理意义。离散关系是关于轨迹的频率预测;所以这些轨迹必定是可测量的——正好与比方说掷个5必定可用经验确定一样——如果我们能检验我们关于这些轨迹或这些掷猜的频率预测的话。

  Heisenberg之摈弃轨迹概念,及其谈论“不可观察的量值”,清楚地表明哲学思想的影响,尤其是实证主义思想的影响。March在同样影响下写道:“人们也许可以不怕误解地说……对于一个物理学家来说,一个物体仅在他观察它的时刻才有实在性。自然,没有人如此疯狂以致断言一个物体在我们背对着它时不再存在;但是它在那时不再是物理学家研究的对象,因为没有可能根据实验对它说些什么了。”换言之,当一个物体不在被观察时它以这种或那种轨迹运动这个假说是不可证实的。这当然是明显的,但是无聊的。然而重要的是这个或类似的假说是可证伪的:根据它沿一定轨迹运动的假说,我们能够预测物体将在这个或那个位置上可观察到;这是一个可被反驳的预测。量子论并不排除这类程序将在下节看到。但是事实上我们在这里说的已经很充分了;因为它解决了与轨迹概念“无意义性”有联系的一切困难。如果我们记得从轨迹概念所谓的失败中引出的极端结论,就可以更好地认识到这对澄清气氛有多么大的帮助。Schlick表述这些结论如下:“也许描述所考察情况的最简练方法是说(正如最杰出的量子问题研究者所做的那样),平常时空概念的有效性仅限于宏观上可观察的范围,不能把它们应用于原子的尺度。”这里Schlick可能在暗示Bohr,后者写道:“所以人们可假定,在与量子论的一般问题有关的地方,不只是一个力学和电动力学理论的改变,一个用普通物理学概念可以描述的改变,而是我们时空图象的根深蒂固的失弃,直到现在还用这些时空图象来描述自然现象。”Heisenberg采纳了Bohr的思想,即放弃时空描述作为他的研究纲领的基础。他的成就似乎表明这个放弃是富有成效的。但是事实上,这个纲领从来没有贯彻过。鉴于我们的分析,时空概念频繁的、不可避免的,即使是偷偷摸摸的使用,现在似乎可证明是正当的。因为这已表明统计离散关系是关于位置加动量离散的陈述,所以是关于轨迹的陈述。

  由于我们已经证明测不准关系是形式上单称的概率陈述,我们也能理清对测不准关系的客观解释和主观解释纠缠在一起的乱丝。我们在第71节中知道,一切形式上单称的概率陈述都能主观地解释为不确定的预测,关于我们知识不确定性的陈述。我们也已看到,在哪些假定下,客观地解释这种陈述的合理的和必要的尝试必定会失败。如果人们试图通过把不确定性直接赋于单个事件,用单个的客观解释来代替统计的客观解释,就必定要失败然而如果人们在主观的意义上(直接)解释Heisenberg公式,那么物理学作为一门客观科学的地位就受到了损害;因为为了前后一致,人们不得不主观地解释Schrodinger的概率波。这个结论是由Jeans作出的,他说:“简言之,粒子图象告诉我们,我们对一个电子的知识是不确定的;波图象则告诉我们电子本身是不确定的,不管是否对它作了实验。然而测不准原理的内容在这两种情况下必定是完全一样的。只有一种办法使之如此:我们必须设想,波图象提供给我们的不是客观自然界的描述,而只是我们关于自然界知识的描述……”因此对于Jeans来说,Schrodinger的波是主观概率波,关于我们知识的波。并且随着这一点整个主观主义概率论就侵入了物理学领域。我已摈弃的论据——利用Bernoulli定理作为从无知到统计学知识的桥梁以及类似的论据(参阅第62节)——就成为不可避免的了。Jeans表述现代物理学的主观主义态度如下:“Heisenberg通过放弃主要的谜——客观宇宙的性质——抨击物理宇宙之谜不可解,而集中于协调我们对这个宇宙的观察这个次要疑点上。因此最后出现的波图象应该证明仅与通过我们的观察获得的我们关于宇宙的知识有关,就不奇怪了。”

  这些结论无疑非常容易为实证主义者接受。然而我自己的有关客观性的观点犹未涉及。量子论的统计陈述必须像任何其他物理学陈述一样是可以在主体间检验的。并且我的简单分析不仅坚持了时空描述的可能性,也保持了物理学的客观性。

  有趣的是对Schrodinger波的这种主观解释有一个对于非统计学的,因而是直接的(即单个的客观描述)。Schrodinger本人在他的著名的Collected Papers on Waue-Mchanics中曾对他的波方程式(正如我们已经看到的它是形式上单称的概率陈述)提出了某种这样的解释。他试图把粒子直接同波包本身等同起来。但是他的尝试直接导致这类解释:我指的是把测不准归之于物理客体本身(客观化的测不准性)所特具的那些困难。Schrodinger不得不假定,电子电荷在空间(以及由波幅决定的电荷密度)被“模糊或涂污”;这个假定结果证明与电的原子结构是不相容的。Born的统计学解释解决了这个问题;但是统计学解释与非统计学解释之间的逻辑关系仍是模糊不清的。结果其他形式上单称的概率陈述——例如测不准关系——的独特性质仍得不到承认,这些陈述继续破坏理论的物质基

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的