爱爱小说网 > 其他电子书 > 上帝掷骰子吗--量子物理史话+作者+曹天 >

第15章

上帝掷骰子吗--量子物理史话+作者+曹天-第15章


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



故敲挥屑谴恚詹盼颐堑腶=2×4+1×1=9。看来是我算错了,我们再算一遍,这次可要打起精神了:a代表A地上车A地下车。所以可能的情况是:我搭II号线在A地上车A地下车(矩阵II第一行第一列),1块。然后转I号线同样在A地上车A地下车(矩阵I第一行第一列),也是1块。1×1=1。还有一种可能是,我搭II号线在A地上车B地下车(矩阵II第一行第二列),3块。然后在B地转I号线从B地回到A地(矩阵 II第二行第一列),3块。3×3=9。所以a=1+9=10。

嗯,奇怪,没错啊。那么难道前面算错了?我们再算一遍,好像也没错,前面a=1+8=9。那么,那么……谁错了?哈哈,海森堡错了,他这次可丢脸了,他发明了一种什么样的表格乘法啊,居然导致如此荒唐的结果:I×II ≠ II×I。

我们不妨把结果整个算出来:

        ┏ ┓
        ┃ 9 5┃
I×II= ┃ 7 10┃
        ┗ ┛
        ┏ ┓
        ┃ 10 5┃
II×I= ┃ 7 9┃
        ┗ ┛

的确,I×II ≠ II×I。这可真让人惋惜,原来我们还以为这种表格式的运算至少有点创意的,现在看来浪费了大家不少时间,只好说声抱歉。但是,慢着,海森堡还有话要说,先别为我们死去的脑细胞默哀,它们的死也许不是完全没有意义的。

大家冷静点,大家冷静点,海森堡摇晃着他那漂亮的头发说,我们必须学会面对现实。我们已经说过了,物理学,必须从唯一可以被实践的数据出发,而不是靠想象和常识习惯。我们要学会依赖于数学,而不是日常语言,因为只有数学才具有唯一的意义,才能告诉我们唯一的真实。我们必须认识到这一点:数学怎么说,我们就得接受什么。如果数学说I×II ≠ II×I,那么我们就得这么认为,哪怕世人用再嘲讽的口气来讥笑我们,我们也不能改变这一立场。何况,如果仔细审查这里面的意义,也并没有太大的荒谬:先搭乘I号线,再转II号线,这和先搭乘II号线,再转I号线,导致的结果可能是不同的,有什么问题吗?

好吧,有人讽刺地说,那么牛顿第二定律究竟是F=ma,还是F=am呢?

海森堡冷冷地说,牛顿力学是经典体系,我们讨论的是量子体系。永远不要对量子世界的任何奇特性质过分大惊小怪,那会让你发疯的。量子的规则,并不一定要受到乘法交换率的束缚。

他无法做更多的口舌之争了,1925年夏天,他被一场热病所感染,不得不离开哥廷根,到北海的一个小岛赫尔格兰(Helgoland)去休养。但是他的大脑没有停滞,在远离喧嚣的小岛上,海森堡坚定地沿着这条奇特的表格式道路去探索物理学的未来。而且,他很快就获得了成功:事实上,只要把矩阵的规则运用到经典的动力学公式里去,把玻尔和索末菲旧的量子条件改造成新的由坚实的矩阵砖块构造起来的方程,海森堡可以自然而然地推导出量子化的原子能级和辐射频率。而且这一切都可以顺理成章从方程本身解出,不再需要像玻尔的旧模型那样,强行附加一个不自然的量子条件。海森堡的表格的确管用!数学解释一切,我们的想象是靠不住的。

虽然,这种古怪的不遵守交换率的矩阵乘法到底意味着什么,无论对于海森堡,还是当时的所有人来说,都还仍然是一个谜题,但量子力学的基本形式却已经得到了突破进展。从这时候起,量子论将以一种气势磅礴的姿态向前迈进,每一步都那样雄伟壮丽,激起滔天的巨浪和美丽的浪花。接下来的3年是梦幻般的3年,是物理史上难以想象的3年,理论物理的黄金年代,终于要放射出它最耀眼的光辉,把整个20世纪都装点得神圣起来。

海森堡后来在写给好友范德沃登的信中回忆道,当他在那个石头小岛上的时候,有一晚忽然想到体系的总能量应该是一个常数。于是他试着用他那规则来解这个方程以求得振子能量。求解并不容易,他做了一个通宵,但求出来的结果和实验符合得非常好。于是他爬上一个山崖去看日出,同时感到自己非常幸运。

是的,曙光已经出现,太阳正从海平线上冉冉升起,万道霞光染红了海面和空中的云彩,在天地间流动着奇幻的辉光。在高高的石崖顶上,海森堡面对着壮观的日出景象,他脚下碧海潮生,一直延伸到无穷无尽的远方。是的,他知道,this is the moment,他已经作出生命中最重要的突破,而物理学的黎明也终于到来。

*********
饭后闲话:矩阵

我们已经看到,海森堡发明了这种奇特的表格,I×II ≠ II×I,连他自己都没把握确定这是个什么怪物。当他结束养病,回到哥廷根后,就把论文草稿送给老师波恩,让他评论评论。波恩看到这种表格运算大吃一惊,原来这不是什么新鲜东西,正是线性代数里学到的“矩阵”!回溯历史,这种工具早在1858年就已经由一位剑桥的数学家Arthur Cayley所发明,不过当时不叫“矩阵”而叫做“行列式”(determinant,这个字后来变成了另外一个意思,虽然还是和矩阵关系很紧密)。发明矩阵最初的目的,是简洁地来求解某些微分方程组(事实上直到今天,大学线性代数课还是主要解决这个问题)。但海森堡对此毫不知情,他实际上不知不觉地“重新发明”了矩阵的概念。波恩和他那精通矩阵运算的助教约尔当随即在严格的数学基础上发展了海森堡的理论,进一步完善了量子力学,我们很快就要谈到。

数学在某种意义上来说总是领先的。Cayley创立矩阵的时候,自然想不到它后来会在量子论的发展中起到关键作用。同样,黎曼创立黎曼几何的时候,又怎会料到他已经给爱因斯坦和他伟大的相对论提供了最好的工具。

乔治?盖莫夫在那本受欢迎的老科普书《从一到无穷大》(One; Two; Three…Infinity)里说,目前数学还有一个大分支没有派上用场(除了智力体操的用处之外),那就是数论。古老的数论领域里已经有许多难题被解开,比如四色问题,费马大定理。也有比如著名的哥德巴赫猜想,至今悬而未决。天知道,这些理论和思路是不是在将来会给某个物理或者化学理论开道,打造出一片全新的天地来。



从赫尔格兰回来后,海森堡找到波恩,请求允许他离开哥廷根一阵,去剑桥讲课。同时,他也把自己的论文给了波恩过目,问他有没有发表的价值。波恩显然被海森堡的想法给迷住了,正如他后来回忆的那样:“我对此着了迷……海森堡的思想给我留下了深刻的印象,对于我们一直追求的那个体系来说,这是一次伟大的突破。” 于是当海森堡去到英国讲学的时候,波恩就把他的这篇论文寄给了《物理学杂志》(Zeitschrift fur Physik);并于7月29日发表。这无疑标志着新生的量子力学在公众面前的首次亮相。

但海森堡古怪的表格乘法无疑也让波恩困扰,他在7月15日写给爱因斯坦的信中说:“海森堡新的工作看起来有点神秘莫测,不过无疑是很深刻的,而且是正确的。”但是,有一天,波恩突然灵光一闪:他终于想起来这是什么了。海森堡的表格,正是他从前所听说过的那个“矩阵”!

但是对于当时的欧洲物理学家来说,矩阵几乎是一个完全陌生的名字。甚至连海森堡自己,也不见得对它的性质有着完全的了解。波恩决定为海森堡的理论打一个坚实的数学基础,他找到泡利,希望与之合作,可是泡利对此持有强烈的怀疑态度,他以他标志性的尖刻语气对波恩说:“是的,我就知道你喜欢那种冗长和复杂的形式主义,但你那无用的数学只会损害海森堡的物理思想。”波恩在泡利那里碰了一鼻子灰,不得不转向他那熟悉矩阵运算的年轻助教约尔当(Pascual Jordan;再过一个礼拜,就是他101年诞辰),两人于是欣然合作,很快写出了著名的论文《论量子力学》(Zur Quantenmechanik),发表在《物理学杂志》上。在这篇论文中,两人用了很大的篇幅来阐明矩阵运算的基本规则,并把经典力学的哈密顿变换统统改造成为矩阵的形式。传统的动量p和位置q这两个物理变量,现在成为了两个含有无限数据的庞大表格,而且,正如我们已经看到的那样,它们并不遵守传统的乘法交换率,p×q ≠ q×p。

波恩和约尔当甚至把p×q和q×p之间的差值也算了出来,结果是这样的:

pq – qp = (h/2πi) I

h是我们已经熟悉的普朗克常数,i是虚数的单位,代表…1的平方根,而I叫做单位矩阵,相当于矩阵运算中的1。波恩和约尔当奠定了一种新的力学——矩阵力学的基础。在这种新力学体系的魔法下,普朗克常数和量子化从我们的基本力学方程中自然而然地跳了出来,成为自然界的内在禀性。如果认真地对这种力学形式做一下探讨,人们会惊奇地发现,牛顿体系里的种种结论,比如能量守恒,从新理论中也可以得到。这就是说,新力学其实是牛顿理论的一个扩展,老的经典力学其实被“包含”在我们的新力学中,成为一种特殊情况下的表现形式。

这种新的力学很快就得到进一步完善。从剑桥返回哥廷根后,海森堡本人也加入了这个伟大的开创性工作中。11月26日,《论量子力学II》在《物理学杂志》上发表,作者是波恩,海森堡和约尔当。这篇论文把原来只讨论一个自由度的体系扩展到任意个自由度,从而彻底建立了新力学的主体。现在,他们可以自豪地宣称,长期以来人们所苦苦追寻的那个目标终于达到了,多年以来如此困扰着物理学家的原子光谱问题,现在终于可以在新力学内部完美地解决。《论量子力学II》这篇文章,被海森堡本人亲切地称呼为“三人论文”(Dreimannerarbeit)的,也终于注定要在物理史上流芳百世。

新体系显然在理论上获得了巨大的成功。泡利很快就改变了他的态度,在写给克罗尼格(Ralph Laer Kronig)的信里,他说:“海森堡的力学让我有了新的热情和希望。”随后他很快就给出了极其有说服力的证明,展示新理论的结果和氢分子的光谱符合得非常完美,从量子规则中,巴尔末公式可以被自然而然地推导出来。非常好笑的是,虽然他不久前还对波恩咆哮说“冗长和复杂的形式主义”,但他自己的证明无疑动用了最最复杂的数学。

不过,对于当时其他的物理学家来说,海森堡的新体系无疑是一个怪物。矩阵这种冷冰冰的东西实在太不讲情面,不给人以任何想象的空间。人们一再追问,这里面的物理意义是什么?矩阵究竟是个什么东西?海森堡却始终护定他那让人沮丧的立场:所谓“意义”是不存在的,如果有的话,那数学就是一切“意义”所在。物理学是什么?就是从实验观测量出发,并以庞大复杂的数学关系将它们联系起来的一门科学,如果说有什么图像能够让人们容易理解和记忆的话,那也是靠不住的。但是,不管怎么样,毕竟矩阵力学对于大部分人来说都太陌生太遥远了,而隐藏在它背后的深刻含义,当时还远远没有被发掘出来。特别是,p×q ≠ q×p,这究竟代表了什么,令人头痛不已。

一年后,当薛定谔以人们所喜闻乐见的传统方式发布他的波动方程后,几乎全世界的物理学家都松了一口气:他们终于解脱了,不必再费劲地学习海森堡那异常复杂和繁难的矩阵力学。当然,人人都必须承认,矩阵力学本身的伟大含义是不容怀疑的。

但是,如果说在1925年,欧洲大部分物理学家都还对海森堡,波恩和约尔当的力学一知半解的话,那我们也不得不说,其中有一个非常显著的例外,他就是保罗?狄拉克。在量子力学大发展的年代,哥本哈根,哥廷根以及慕尼黑三地抢尽了风头,狄拉克的崛起总算也为老牌的剑桥挽回了一点颜面。

保罗?埃德里安?莫里斯?狄拉克(Paul Adrien Maurice Dirac)于1902年8月8日出生于英国布里斯托尔港。他的父亲是瑞士人,当时是一位法语教师,狄拉克是家里的第二个孩子。许多大物理学家的童年教育都是多姿多彩的,比如玻尔,海森堡,还有薛定谔。但狄拉克的童年显然要悲惨许多,他父亲是一位非常严肃而刻板的人,给保罗制定了众多的严格规矩。比如他规定保罗只能和他讲法语(他认为这样才能学好这种语言),于是当保罗无法表达自己的时候,只好选择沉默。在小狄拉克的童年里,音乐、文学、艺术显然都和他无缘,社交活动也几乎没有。这一切把狄拉克塑造成了一个沉默寡言,喜好孤独,淡泊名利,在许多人眼里显得geeky的人。有一个流传很广的关于狄拉克的笑话是这样说的:有一次狄拉克在某大学演讲,讲完后一个观众起来说:“狄拉克教授,我不明白你那个公式是如何推导出来的。”狄拉克看着他久久地不说话,主持人不得不提醒他,他还没有回答问题。

“回答什么问题?”狄拉克奇怪地说,“他刚刚说的是一个陈述句,不是一个疑问句。”

1921年,狄拉克从布里斯托尔大学电机工程系毕业,恰逢经济大萧条,结果没法找到工作。事实上,很难说他是否会成为一个出色的工程师,狄拉克显然长于理论而拙于实验。不过幸运的是,布里斯托尔大学数学系又给了他一个免费进修数学的机会,2年后,狄拉克转到剑桥,开始了人生的新篇章。

我们在上面说到,1925年秋天,当海森堡在赫尔格兰岛作出了他的突破后,他获得波恩的批准来到剑桥讲学。当时海森堡对自己的发现心中还没有底,所以没有在公开场合提到自己这方面的工作,不过7月28号,他参加了所谓“卡皮察俱乐部”的一次活动。卡皮察(P。L。Kapitsa)是一位年轻的苏联学生,当时在剑桥跟随卢瑟福工作。他感到英国的学术活动太刻板,便自己组织了一个俱乐部,在晚上聚会,报告和讨论有关物理学的最新进展。我们在前面讨论卢瑟福的时候提到过卡皮察的名字,他后来也获得了诺贝尔奖。

狄拉克也是卡皮察俱乐部的成员之一,他当时不在剑桥,所以没有参加这个聚会。不过他的导师福勒(William Alfred Fowler)参加了,而且大概在和海森堡的课后讨论中,得知他已经发明了一种全新的理论来解释原子光谱问题。后来海森堡把他的证明寄给了福勒,而福勒给了狄拉克一个复印本。这一开始没有引起狄拉克的重视,不过大概一个礼拜后,他重新审视海森堡的论文,这下他把握住了其中的精髓:别的都是细枝末节,只有一件事是重要的,那就是我们那奇怪的矩阵乘法规则:p×q ≠ q×p。

*********
饭后闲话:约尔当

恩斯特?帕斯库尔?约尔当(Ernst Pascual Jordan)出生于汉诺威。在我们的史话里已经提到,他是物理史上两篇重要的论文《论量子力学》I和II的作者之一,可以说也是量子力学的主要创立者。但是,他的名声显然及不上波恩或者海森堡。

这里面的原因显然也是多方面的,1925年,约尔当才22岁,无论从资格还是名声来说,都远远及不上元老级的波恩和少年成名的海森堡。当时和他一起做出贡献的那些人,后来都变得如此著名:波恩,海森堡,泡利,他们的光辉耀眼,把约尔当完全给盖住了。

从约尔当本人来说,他是一个害羞和内向的人,说话有口吃的毛病,总是结结

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的