爱爱小说网 > 其他电子书 > 上帝掷骰子吗--量子物理史话+作者+曹天 >

第46章

上帝掷骰子吗--量子物理史话+作者+曹天-第46章


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




  更令人无法理解的是,如果弦论想要自圆其说,它就必须要求我们的时空是26维的!平常的时空我们都容易理解:它有3维空间,外加1维时间,那多出来的 22维又是干什么的?这种引入多维空间的理论以前也曾经出现过,如果大家还记得在我们的史话中曾经小小地出过一次场的,玻尔在哥本哈根的助手克莱恩(Oskar Klein),也许会想起他曾经把“第五维”的思想引入薛定谔方程。克莱恩从量子的角度出发,而在他之前,爱因斯坦的忠实追随者,德国数学家卡鲁扎(Theodor Kaluza)从相对论的角度也作出了同样的尝试。后来人们把这种理论统称为卡鲁扎…克莱恩理论(Kaluza…Klein Theory,或KK理论)。但这些理论最终都胎死腹中。的确很难想象,如何才能让大众相信,我们其实生活在一个超过4维的空间中呢?

  最后,量子色动力学(QCD)的兴起使得弦论失去了最后一点吸引力。正如我们在前面所述,QCD成功地攻占了强相互作用力,并占山为王,得到了大多数物理学家的认同。在这样的内外交困中,最初的弦论很快就众叛亲离,被冷落到了角落中去。

  在弦论最惨淡的日子里,只有施瓦茨和谢尔克两个人坚持不懈地沿着这条道路前进。1971年,施瓦茨和雷蒙(Pierre Ramond)等人合作,把原来需要26维的弦论简化为只需要10维。这里面初步引入了所谓“超对称”的思想,每个玻色子都对应于一个相应的费米子(玻色子是自旋为整数的粒子,如光子。而费米子的自旋则为半整数,如电子。粗略地说,费米子是构成“物质”的粒子,而玻色子则是承载“作用力”的粒子)。与超对称的联盟使得弦论获得了前所未有的力量,使它可以同时处理费米子,更重要的是,这使得理论中的一些难题(如快子)消失了,它在引力方面的光明前景也逐渐显现出来。可惜的是,在弦论刚看到一线曙光的时候,谢尔克出师未捷身先死,他患有严重的糖尿病,于1980年不幸去世。施瓦茨不得不转向伦敦玛丽皇后学院的迈克尔·格林(Michael Green),两人最终完成了超对称和弦论的结合。他们惊讶地发现,这个理论一下子犹如脱胎换骨,完成了一次强大的升级。现在,老的“弦论”已经死去了,新生的是威力无比的“超弦”理论,这个“超”的新头衔,是“超对称”册封给它的无上荣耀。

  当把他们的模型用于引力的时候,施瓦茨和格林狂喜得能听见自己的心跳声。老的弦论所预言的那个自旋2质量0的粒子虽然在强子中找不到位置,但它却符合相对论!事实上,它就是传说中的“引力子”!在与超对称同盟后,新生的超弦活生生地吞并了另一支很有前途的军队,即所谓的“超引力理论”。现在,谢天谢地,在计算引力的时候,无穷大不再出现了!计算结果有限而且有意义!引力的国防军整天警惕地防卫粒子的进攻,但当我们不再把粒子当作一个点,而是看成一条弦的时候,我们就得以瞒天过海,暗渡陈仓,绕过那条苦心布置的无穷大防线,从而第一次深入到引力王国的纵深地带。超弦的本意是处理强作用力,但现在它的注意力完全转向了引力:天哪,要是能征服引力,别的还在话下吗?

  关于引力的计算完成于1982年前后,到了1984年,施瓦茨和格林打了一场关键的胜仗,使得超弦惊动整个物理界:他们解决了所谓的“反常”问题。本来在超弦中有无穷多种的对称性可供选择,但施瓦茨和格林经过仔细检查后发现,只有在极其有限的对称形态中,理论才得以消除这些反常而得以自洽。这样就使得我们能够认真地考察那几种特定的超弦理论,而不必同时对付无穷多的可能性。更妙的是,筛选下来的那些群正好可以包容现有的规范场理论,还有粒子的标准模型!伟大的胜利!

  “第一次超弦革命”由此爆发了,前不久还对超弦不屑一顾,极其冷落的物理界忽然像着了魔似的,倾注出罕见的热情和关注。成百上千的人们争先恐后,前仆后继地投身于这一领域,以致于后来格劳斯(David Gross)说:“在我的经历中,还从未见过对一个理论有过如此的狂热。”短短3年内,超弦完成了一次极为漂亮的帝国反击战,将当年遭受的压抑之愤一吐为快。在这期间,像爱德华·威顿,还有以格劳斯为首的“普林斯顿超弦四重奏”小组都作出了极其重要的贡献,不过我们没法详细描述了。网上关于超弦的资料繁多,如果有兴趣的读者可以参考这个详细的资料索引:

  arxiv/abs/hep…th/0311044

  第一次革命过后,我们得到了这样一个图像:任何粒子其实都不是传统意义上的点,而是开放或者闭合(头尾相接而成环)的弦。当它们以不同的方式振动时,就分别对应于自然界中的不同粒子(电子、光子……包括引力子!)。我们仍然生活在一个10维的空间里,但是有6个维度是紧紧蜷缩起来的,所以我们平时觉察不到它。想象一根水管,如果你从很远的地方看它,它细得就像一条线,只有1维的结构。但当真把它放大来看,你会发现它是有横截面的!这第2个维度被卷曲了起来,以致于粗看之下分辨不出。在超弦的图像里,我们的世界也是如此,有6个维度出于某种原因收缩得非常紧,以致粗看上去宇宙仅仅是4维的(3维空间加1 维时间)。但如果把时空放大到所谓“普朗克空间”的尺度上(大约10^…33厘米),这时候我们会发现,原本当作是时空中一个“点”的东西,其实竟然是一个6维的“小球”!这6个卷曲的维度不停地扰动,从而造成了全部的量子不确定性!

  这次革命使得超弦声名大振,隐然成为众望所归的万能理论候选人。当然,也有少数物理学家仍然对此抱有怀疑态度,比如格拉肖,费因曼。霍金对此也不怎么热情。大家或许还记得我们在前面描述过,在阿斯派克特实验后,BBC的布朗和纽卡斯尔大学的戴维斯对几位量子论的专家做了专门访谈。现在,当超弦热在物理界方兴未艾之际,这两位仁兄也没有闲着,他们再次出马,邀请了9位在弦论和量子场论方面最杰出的专家到BBC做了访谈节目。这些记录后来同样被集合在一起,于1988年以《超弦:万能理论?》为名,由剑桥出版社出版。阅读这些记录可以发现,专家们虽然吵得不像量子论那样厉害,但其中的分歧仍是明显的。费因曼甚至以一种饱经沧桑的态度说,他年轻时注意到许多老人迂腐地抵制新思想(比如爱因斯坦抵制量子论),但当他自己也成为一个老人时,他竟然也身不由己地做起同样的事情,因为一些新思想确实古怪——比如弦论就是!

  人们自然而然地问,为什么有6个维度是蜷缩起来的?这6个维度有何不同之处?为什么不是5个或者8个维度蜷缩?这种蜷缩的拓扑性质是怎样的?有没有办法证明它?因为弦的尺度是如此之小(普朗克空间),所以人们缺乏必要的技术手段用实验去直接认识它,而且弦论的计算是如此繁难,不用说解方程,就连方程本身我们都无法确定,而只有采用近似法!更糟糕的是,当第一次革命过去后,人们虽然大浪淘沙,筛除掉了大量的可能的对称,却仍有5种超弦理论被保留了下来,每一种理论都采用10维时空,也都能自圆其说。这5种理论究竟哪一种才是正确的?人们一鼓作气冲到这里,却发现自己被困住了。弦论的热潮很快消退,许多人又回到自己的本职领域中去,第一次革命尘埃落定。

  一直要到90年代中期,超弦才再次从沉睡中苏醒过来,完成一次绝地反攻。这次唤醒它的是爱德华·威顿。在1995年南加州大学召开的超弦年会上,威顿让所有的人都吃惊不小,他证明了,不同耦合常数的弦论在本质上其实是相同的!我们只能用微扰法处理弱耦合的理论,也就是说,耦合常数很小,在这样的情况下 5种弦论看起来相当不同。但是,假如我们逐渐放大耦合常数,它们应当是一个大理论的5个不同的变种!特别是,当耦合常数被放大时,出现了一个新的维度—— 第11维!这就像一张纸只有2维,但你把许多纸叠在一起,就出现了一个新的维度——高度!

  换句话说,存在着一个更为基本的理论,现有的5种超弦理论都是它在不同情况的极限,它们是互相包容的!这就像那个著名的寓言——盲人摸象。有人摸到鼻子,有人摸到耳朵,有人摸到尾巴,虽然这些人的感觉非常不同,但他们摸到的却是同一头象——只不过每个人都摸到了一部分而已!格林(Brian Greene)在1999年的《优雅的宇宙》中举了一个相当搞笑的例子,我们把它发挥一下:想象一个热带雨林中的土著喜欢水,却从未见过冰,与此相反,一个爱斯基摩人喜欢冰,但因为他生活的地方太寒冷,从未见过液态的水的样子(无疑现实中的爱斯基摩人见过水,但我们可以进一步想象他生活在土星的光环上,那就不错了),两人某天在沙漠中见面,为各自的爱好吵得不可开交。但奇妙的事情发生了:在沙漠炎热的白天,爱斯基摩人的冰融化成了水!而在寒冷的夜晚,水又重新冻结成了冰!两人终于意识到,原来他们喜欢的其实是同一样东西,只不过在不同的条件下形态不同罢了。

  这样一来,5种超弦就都被包容在一个统一的图像中,物理学家们终于可以松一口气。这个统一的理论被称为“M理论”。就像没人知道为啥007电影中的那个博士发明家叫做“Q”(扮演他的老演员于1999年车祸去世了,在此纪念一下),也没人知道这个“M”确切代表什么意思,或许发明者的本意是指“母亲” (Mother),说明它是5种超弦的母理论,但也有人认为是“神秘”(Mystery),或者“矩阵”(Matrix),或者“膜” (Membrane)。有些中国人喜欢称其为“摸论”,意指“盲人摸象”!

  在M理论中,时空变成了11维,由此可以衍生出所有5种10维的超弦论来。事实上,由于多了一维,我们另有一个超引力的变种,因此一共是6个衍生品!这时候我们再考察时空的基本结构,会发现它并非只能是1维的弦,而同样可能是0维的点,2维的膜,或者3维的泡泡,或者4维的……我想不出4维的名头。实际上,这个基本结构可能是任意维数的——从0维一直到9维都有可能!M理论的古怪,比起超弦还要有过之而无不及。

  不管超弦还是M理论,它们都刚刚起步,还有更长的路要走。虽然异常复杂,但是超弦/M理论仍然取得了一定的成功,甚至它得以解释黑洞熵的问题—— 1996年,施特罗明格(Strominger)和瓦法(Vafa)的论文为此开辟了道路。在那之前不久的一次讲演中,霍金还挖苦说:“弦理论迄今为止的表现相当悲惨:它甚至不能描述太阳结构,更不用说黑洞了。”不过他最终还是改变了看法而加入弦论的潮流中来。M理论是“第二次超弦革命”的一部分,如今这次革命的硝烟也已经散尽,超弦又进入一个蛰伏期。PBS后来在格林的书的基础上做了有关超弦的电视节目,在公众中引起了相当的热潮。或许不久就会有第三次第四次超弦革命,从而最终完成物理学的统一,我们谁也无法预见。

  值得注意的是,自弦论以来,我们开始注意到,似乎量子论的结构才是更为基本的。以往人们喜欢先用经典手段确定理论的大框架,然后在细节上做量子论的修正,这可以称为“自大而小”的方法。但在弦论里,必须首先引进量子论,然后才导出大尺度上的时空结构!人们开始认识到,也许“自小而大”才是根本的解释宇宙的方法。如今大多数弦论家都认为,量子论在其中扮演了关键的角色,量子结构不用被改正。而广义相对论的路子却很可能是错误的,虽然它的几何结构极为美妙,但只能委屈它退到推论的地位——而不是基本的基础假设!许多人相信,只有更进一步地依赖量子的力量,超弦才会有一个比较光明的未来。我们的量子虽然是那样的古怪,但神赋予它无与伦比的力量,将整个宇宙都控制在它的光辉之下。

  尾声

  我们的史话终于到了尽头。量子论在奇妙的气氛中诞生,在乱世中艰难地成长起来,与一些伟大的对手展开过激烈的交战。它建筑起经天纬地的巨构,却也曾在其中迷失方向而茫然徘徊不已。它至今使我们深深困扰,却又担负着我们最虔诚和最宝贵的愿望和梦想。它最终的归宿是什么?超弦?M理论?我们仍不清楚,但我们深信会出现一个量子引力理论,把整个物理学最终统一起来,把宇宙最终极的奥秘骄傲地谱写在人类的历史之中。

  在新世纪的开始,物理学终于又一次走到了决定命运的关头。我们似乎又站在一个大时代的前沿,光辉的前景令我们怦然心动,激动又慌乱,几乎不敢去想象那是怎样一个伟大的景象。最终的统一似乎已经触手可及,甚至已经听得到它的脉搏和心跳。历史似乎在冥冥中峰回路转,兜了一个大圈后又回到100多年前,回到经典物理一统天下时那似曾相识的场景。但这次的意义甚至更伟大:当年的牛顿力学和麦克斯韦电磁论虽然彼此相容,但它们毕竟是两个不同形式的理论!从这个意义上说,庞大的经典帝国最多是一个结合得比较紧密的邦联。但这次不同了,那个传说中的万能理论,它能够用同一个方程去描述宇宙间所有的现象,在所有的领域中,它都实现了直接而有效的统治。这是有史以来第一次,我们有可能完成真正意义上的彻底统一,把所有的大权都集于一身,从而开创一个真正磅礴的帝国时代。

  人们似乎已经看到了天空中,金色的光辉再一次闪耀起来,神圣的诗篇再一次被吟诵,回响在宇宙的每一个角落。当这个日子到来的时候,物理学将再一次到达它的巅峰,登上宇宙的极顶。极目眺望,众山皆小,一切都在脚下。虽然很清楚历史上这样的神话最终归于破灭,霍金仍然忍不住在《时间简史》里说:“在谨慎乐观的基础上,我仍然相信,我们可能已经接近于探索自然的终极定律的终点。”

  但是,统一以后呢?是不是一切都大功告成了?物理学是不是又走到了它的尽头,再没有更多的发现可以作出了?我们的后代是不是将再一次陷入无事可做的境地,除了修正几个常数在小数点后若干位的值而已?或者,在未来的某一天,地平线上又会出现小小的乌云,带来又一场迅猛的狂风暴雨,把我们的知识体系再一次砸烂,并引发新的革命?历史是不是这样一种永无止境的轮回,大自然是不是永远也不肯向我们展现它最终的秘密,而我们的探索,是不是永远也没有终点?

  这一切都没有答案,我们只能义无反顾地沿着这条道路继续前进。或许历史终究是一场轮回,但在每一次的轮回中,我们毕竟都获得了更为伟大的发现。科学在不停地检讨自己,但这种谦卑的审视和自我否定不但没有削弱它的光荣,反而使它获得了永恒的力量,也不断地增强着我们对于它的信心。人类居住在太阳系中的一颗小小行星上,他们的文明不过万年的历史,现代科学创立不过300年,但他们的智慧贯穿整个时空,从最小的量子到最大的宇宙尺度,从大爆炸的那一刻到时间的终点,从最近的白矮星到最

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的