爱爱小说网 > 其他电子书 > 科普-中华学生百科全书 >

第39章

科普-中华学生百科全书-第39章

小说: 科普-中华学生百科全书 字数: 每页3500字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



方地面雷达系统。其后,在中东战争、英阿马岛战争、两伊战争中,反雷达
导弹都显示了巨大的威力。

“最优化”思想

     在日常生活中,我们都有这样的经验,无论干什么事都希望以最小的代
价获得最大的成功。例如上街购买东西时,我们总是挑那些质量好、外形最
美观、价格也便宜的商品;在学习上,我们喜欢掌握最好的学习方法,以便
在最短的时间内取得最好的学习成绩;在工作时,我们更愿意用最轻松愉快
的方式来取得最满意的工作效果。这些看似平常的日常现象,其中包含了现
代控制理论中的“最优化”思想。将上述这种“最优化”的观点应用于工程
实践,便产生了在社会生活各个方面得到广泛应用的最优控制技术。
     最优控制理论的发展是伴随着“最优化”概念的提出而开始的。在第二
次大战期间及以后的一段时间内,应战争和军事防御上的需要,以提高大炮
发射命中率为主要目标的自动控制系统(通常叫做伺服系统)的技术日臻完
善。但是,随着社会的发展,简单的反馈控制已经难以满足工程实践的要求,
传统的系统设计方法也无法实现日渐增高的性能指标。在这种情况下,科学
家们通过大量的研究,于 50 年代初提出了最优化的概念,并试图对控制对象
施加最优控制。但由于理论上尚不完善故未能真正实现。直到 1960 年前后,
由于在控制理论中引入一系列新的研究方法和数学成果,推出了最优控制所
必须满足的必要的充分条件后,才使最优控制的应用逐渐普及,并成为 60
年代自动控制领域的热门课题。特别是空间技术的迅猛发展,更进一步推动
了最优控制理论向前迈进。举个例子来说,为了使宇宙飞船登月舱能以最小
的燃料在月球表面准确、平稳地实现“软着陆”,即落到月球表面时的速度
恰好为零,以避免与月球表面发生碰撞而损坏舱内设备,必然选择合适的控
制方式来改变火箭发动机的推力。这就是所谓的“月球软着陆”问题,也叫
做“燃料最省控制问题。”
     再举一个例子:坐电梯。开关一按,哧溜一下就到了几十层的大楼顶上。
电梯省时省力,是现代科学和文明的产物。不过,应当怎样来控制电梯的运
动,使它能以最短的时间到达顶楼(或从楼上下到地面)地面呢?也许有人
会说,这还不简单,让电梯始终以最快的速度直上(或直下)不就行了么!
其实仔细想一下就会发现这种控制方式是不行的。因为当电梯以最大的速度

冲向楼顶(或地面)时,必然会发生剧烈的碰撞而造成设置损坏甚至人员伤
亡。因此必须运用科学分析的方法,制定合理可行的控制方案,既要保证电
梯上升(或下降)的时间最短,又要让它到达楼顶或地面时速度恰好为零。
这也是一个最优控制问题,我们称之为“时间最优控制问题”。
    为了解决各种各样的最优控制问题,人们找到了许多方法,其中有两种
最有成效。一种是美国学者贝尔曼于 1953~1957 年间研究提出的“动态规
划”;另一种是前苏联学者庞特里亚金于 1956~1958 年间创立的“极大值原
理”。

变色蜥蜴的启示

    “变色龙”,也叫“变色蜥蜴”,它能够自动适应周围环境的变化,随
时把皮肤颜色变成与它所附着的物体相同的颜色(俗称保护色)。变色龙这
种难能可贵的变色本领具有极好的伪装效果,通常不会为凶猛野兽识别,从
而达到保护自己免受其天敌袭击或吞食的目的。
    我们人体本身也同样具有适应外界环境变化的巨大能力。如人的体温,
无论酷暑严寒,总能保持在一个相对恒定的水平上。
    人们从生物体具有自动适应外界环境变化的能力这种自然现象中受到了
很大的启发。如果人们设计的自动控制系统也能够在外界条件发生变化时,
仍然保持最优运行,岂不是美事一桩吗?正是在这种思想支配下,人们提出
了自适应控制(Adaptive Control)的概念。
    前面我们已经介绍了,反馈控制的基本思想是利用系统输入(受控量)
与希望值之间的偏差来控制系统的行为,使误差趋近于零。但实际上,由于
多数受控制对象的特性很难准确掌握,内部参数也随环境而变化(如电阻会
随温度变化),外界条件会随时波动(如电压波动),而且这些变化通常是
无法预测的,所以,人们在对原系统进行控制的过程中,该系统的特性实际
上已经发生了不同程度的变化。事先确定的最优控制在内部参数和外部环境
变化后,可能已不再是最优方案了,因此只有设计一种随内部参数和外部环
境变化而自动调整系统特性的控制方式,才能保证控制系统始终处于或接近
最优运行状态,这种系统就是自适应控制系统,具有自适应能力的控制器叫
做自适应控制器。
    自适应控制的设想,最先是由考德威尔(W.1.Caldwell)于 1950 年提出
来的。1958 年美国麻省理工学院的怀特克(H.P.Whitaker)教授首先应用自
适应控制方法设计了飞机自适应自动驾驶仪。
    自适应控制系统的两个基本功能是:①能够自动检测和分析受控对象的
特性以及系统所处环境的变化;②能够根据从环境和系统内部检测到的信息
得出决策,适当改变系统的结构或参数以及控制策略,以保护系统在任何情
况下都能稳定和最优运行。要实现这两种功能,显然必须进行大量的复杂计
算和推断,所以自适应控制系统离不开现代社会的“天之骄子”——电子计
算机的帮助。可以说,没有电子计算机的参与,要实现系统的自适应控制是
不可能的,正如“巧妇难为无米之炊”。
    如前所述,飞行器的控制是较早应用自适应控制技术的。大家知道,飞
行器飞行的高度和速度会随着高空中云层、气流等环境的改变而发生剧烈变
化,飞行器的动力学参数也会产生较大波动,依靠常规的反馈控制往往难以

获得令人满意的控制精度。现在,采用带电脑的自适应控制系统可以实现良
好的飞行。此外,大型船舶的自动驾驶仪是自适应控制技术成功应用的典型
范例。
    海上航行,环境复杂,气候多变,随时会出现一些意想不到的情况,如
海浪、海潮、台风等。采用船舶自适应驾驶仪后,则可以克服风、流、浪、
水域深度、船舶装载重量及其他不可预见的因素对船舶操纵性能的影响,确
保船舶在各种环境条件下能量消耗最小,并安全准确地航行。目前,瑞典、
日本和英美等国已生产出许多性能良好的产品投放市场。由于采用这种自适
应驾驶仪后,航速可提高 1%,估计每条远洋轮船可节省燃油 3%,因此具有
明显的经济效益和社会效益。
    在医院,当有重病患者需急诊抢救时,往往要对患者进行长时间的输液
治疗,这对医护人员是一个很重的负担。日夜值班守护,一时疏忽就可能酿
成重大事故。但如果采用自适应监护系统,就可以日夜不间断地监测病人的
脉搏和心电图,及时获得病情信息,并根据病人病情变化自动调整输液量。
这样不但减轻医护人员的工作负担,还可明显提高治疗效果。
    此外,自适应控制技术还广泛应用于工业、农业、石油勘探与开发、资
源分配、宏观经济调控等各个部门。
    自适应控制系统的进一步发展,将走向所谓“自学习”、“自组织”和
“智能控制”系统。这些系统除具备一般自适应功能外,还能够自动记忆本
系统过去的经验和教训,回忆过去曾经发生的情况,并基于这些信息改进系
统的自适应功能。或许在不远的将来,通过读者朋友们的辛勤劳动和创造,
在自动控制领域内将产生更加惊人的突破。

“黑箱”问题

    今天,人们在许多科学研究领域,都可以碰到“黑箱”这一概念,但它
并不是指一只真正的黑色箱子,而是控制论中的一个重要概念。作为一种近
代科学方法,黑箱方法已越来越受到人们重视,并且与现代科学技术手段联
系在一起,广泛应用于社会生活实践中。
    1945 年,控制论的创始人维纳在一篇文章中写道:“所有的科学问题都
是作为‘闭盒’问题开始的”,“若干可供选择的结构被密封在‘闭盒’中,
研究它们的唯一途径是利用闭盒的输入和输出。”维纳所说的闭盒,也就是
我们今天所说的黑箱。
    到底什么是“黑箱”呢?粗略地说,所谓黑箱是指它的内部构造和机理
还不清楚,但可以通过外部观测和试验来认识它的功能和特征。在现实生活
中,许多客观事物,当人们还不可能,或客观条件不允许深入解剖其内部细
节(因而无法详细了解其内部结构和特征),都可以把它看做是黑箱。为了
让读者对黑箱概念有个形象化的认识,我们先从“大脑之谜”说起。
    “大脑之谜”,也叫做“身心问题”,在科学研究史上是一个长期以来
没有得到圆满解答的难题,无数科学家和哲学家倾注了毕生的心血进行过深
入探讨和研究,提出了种种假设和理论。思维究竟是怎样从物质中产生出来
的?大脑功能的具体活动机制又是什么?要解答这一系列问题可不是一件容
易的事。人们可以用物理上的分割法,研究物质的结构和属性;也可以用化
学分解和合成的方法来了解不同物质的成分。但这些方法,对研究大脑的思

维功能却是鞭长莫及的,因为即使按这些方法的要求,将大脑打开,解剖分
析,也只能是对失去思维功能的大脑物质的认识。这样,在科学研究面前,
大脑的思维过程就是一个只见其外观和表现,而无法深入其内在了解其机制
的难题。它就像一个不能打开的箱子一样,里面的一切对于我们来说都是黑
乎乎的,一无所知。
    在高能物理中,就有如下一个事实:当物质被高度分割后,就会出现不
能再分割的微粒,这时人们只能借助科学仪器来观察其行为,而无法再通过
分割来了解其内部结构。对于这类问题,必须开辟新的研究途径。幸好控制
论中提出的黑箱研究方法,为我们研究这类问题提供了可能。
    所谓黑箱方法,指的是当一个系统内部结构不清楚时,利用外部观察和
试验方法,获得系统(即黑箱)的输入——输出特性;再根据这种信息,在
不打开“黑箱”的情况下,研究其功能和属性,探索其构造和机理的一种科
学方法。人们常说“知人知面不知心”。如果说人相当于一个黑箱的话,那
么我们可以通过“听其言,观其行”而“知其心”,这是一种行为分析的方
法。
    黑箱方法的道理并不神秘,在我们的日常生活中,人们都在自觉或不自
觉地运用这种方法。比如说看电视,如果说看电视必须要懂得电视内部结构
和工作原理才行,那恐怕能看电视的人就不会很多了。然而,人们虽然不懂
得电视机内部构造和机理,却知道按哪个开关打开它,调整哪些开关可以得
到清晰稳定的画面效果,什么情况是出了故障,等等。这些都是我们运用黑
箱方法的具体体现。不过黑箱方法最典型的应用是中医看病。中医看病,主
要是通过“望、闻、问、切”等外部观察作出诊断,开方抓药。有时遇到疑
难杂症没有把握时,可以先投以试探性的药物,观察病人的反应,并随时增
减药物,观其疗效,一旦抓住病症就大胆对症下药。这种从人体的输入特征
入手,实施“辩证论治”的方法正是黑箱方法的精髓所在。上面所举的例子,
主要是让读者对黑箱方法有个基本的认识,但是控制论的黑箱方法,作为一
种科学研究方法,具有自己的特点和独特表达方式。随着科学技术不断发展,
对系统进行动态观测的黑箱方法,已发展成为现代控制理论的一个重要分支
——系统辨识。辨识,指的是通过外部观测系统得到系统的输入…输出数据,
然后用数学方法确定系统的结构和参数,求得定量描述系统动态特性的数学
模型,并在此基础上,实现对系统的最优控制。

“人狮搏斗”中的控制论思想

    意大利古罗马斗兽场内,座无虚席、人声鼎沸,一场残酷的人狮角逐正
在这里进行。只见“兽中之王”大吼一声,猛地一扑,向角斗士直扑过来,
而那位健壮刚强的小伙子却敏捷的闪开了……奴隶主们注视着这一惊险纷呈
的场面,不由得大声叫喊起来,或者得意忘形,或者懊丧至极。原来,他们
正在进行一场奇导的赌博,而且下了一笔可观的赌注呢!
    在这场雄狮与奴隶的生死搏斗中,狮子总想尽早扑住对手美餐一顿,而
人则要设法躲避求得安宁。这是一场惊心动魄、扣人心弦的角斗。但是,谁
又能料到,在这场事件背后竟然蕴含着深奥的对策论的朴素思想呢?
    拿活生生的人去与残忍的雄狮角斗取乐,这在世界文明的今天是不可思
议的,然面在古罗马的奴隶制社会却是司空见惯。假如您读过小说《斯巴达

克思》的话,您就会不以为怪了。
    对抗的双方都要运用自己的聪明才智,充分发挥自身的优势,尽量利用
对方的弱点,选择最优策略,最终战胜对方。对策论就是一门利用数学的观
点和方法研究竞争或斗争现象中,是否存在一方战胜另一方的最优策略以及
如何制定最优策略的科学。由于我国古代把下棋玩牌这类活动叫做博奕,所
以对策论又叫博奕论。
    对策论的相互思想还可以追溯到公元前若干世纪。其中我国古代田忌赛
马的故事已成为脍炙人口的对策问题的范例。这个故事给我们这样一个启
发:只要策略得当,实力并不是取胜的唯一因素。这也深刻地反映了对策的
极端重要性。
    对策论虽然渊源久远,但它真正成为一门独立的学科,还是 1944 年数学
家冯·诺依曼和经济学家摩根斯坦合著的《对策论与经济行为》一书出版以
后的事。而该书则被认为是对策论发展的一块里程碑。冯·诺依曼不仅创立
了对策论,他还是电子计算机的奠基人。1946 年以后,由于电子计算机的发
明和应用,大大简化了对策论中的复杂计算,才使对策论不再仅仅是纸上谈
兵了。进人 60 年代,对策论与最优控制相互渗透,使对策论得到了长足的发
展。
    在对策论发展的基础上,美国的依萨克斯博士通过对军事上追逃问题的
深入研究,开创了微分对策的研究工作,提出在追逃问题中,追逃双方都能
自由决策的新的对策,即微分对策理论。
    形形色色的对策现象,一般都具有三个最基本的要素:(1)局中人。具
有决策权的参与对策的各方叫做局中人。局中人既可以理解成个人(如狮子
与奴隶、齐王与田忌等),也可以理解成集体(如参加比赛的球队)。从人
类与大自然进行斗争的角度理解,也可以把大自然作为局中人,同时把那些
得失一致的参加者看作是一个局中人。(2)策略集。对策过程中每个局中人
可以采取的方案称为该局中人的策略。一个局中人可能采取的所有策略则称
为他的策略集。(3)得失函数。一局对策结束之后,每个局中人都有自己的
得与失,它与各局中人所采取的策略有关,故称为得

返回目录 上一页 下一页 回到顶部 1 2

你可能喜欢的