惊人的假说 [英]弗兰西斯[1].克里克-第12章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
负的电位变化完全阻止其发放。一个神经元是否能兴奋起来,以使它在轴突上产生一个峰电位,主要依赖于这些膜电位的变化(由位于树突和胞体上的兴奋性突触产生)能否引起轴突始端附近区域电位的变化。
让我们更仔细地看一看突触的结构,见图33所示。在皮层中它主要有两种类型,称之为1型或2型。在电子显微镜下可以清楚地将它们区分开。①一般他说,1型突触使接受神经元兴奋,而2型使其抑制。
在大脑中,大部分兴奋性突触不是直接位于树突的主干上,而是位于一些短小的侧枝上,见图34所示,这些侧枝称为棘(spine)。尽管有些棘上也有单个2型(抑制性)突触,但单个棘上从不会多于一个1型(兴奋性)突触。从图34中可以看到,一个棘有点像小烧瓶,它的颈被粘在树突上。棘有一个球形的头(通常稍有畸变)和细圆柱形的颈。突触本身位于其头部,并且在一定程度上与这个细胞在其他位置发生的活动相分离,突触有许多受体,其中也包括了离子门。如果神经递质的分子(来自于突触未端与棘头之间的突触裂隙)处于这种受体分子的某一特殊位置,就能打开离子门。
棘是一个相当精巧的结构,它的功能远未完全了解。我猜测棘是进化的关键产物,有了它,可以对输入信号进行更为复杂的处理。
我不想去描述神经元的脂肪膜上各种类型的蛋白质分子。其中一些分子能被递质分子激活,①它们被称为“受体”。在大脑的新皮层中,主要的兴奋性递质是一种相当普遍的称之为谷氨酸的小有机分子。(2)虽然离子通道仅有两种主要类型(一类仅对电压敏感,另一类仅对神经递质敏感),但最令人感兴趣的是第三类被称为“NMDA通道”的离于通道。③它对电压与谷氨酸都敏感,更精确他说,即便存在着谷氨酸,当局部的膜电位处于静息值,该离子通道很少打开的。如果膜电位升高(例如由于附近其他兴奋性突触的活动),那么谷氨酸可以打开这个通道。因此它仅对突触前的活动(由于轴突末端释放谷氨酸)与突触后的活动(由于其他的输入产生了跨膜电位的变化)的联合作用起反应。我们将会看到,这是脑功能的一个关键特性。
当NMDA谷氨酸通道打开时,不仅允许钠、钾离子通过,而且也有适量的钙离子(Ca2+ )通过,这些流入的钙离子像是这样一种信息的出现,即它能引发复杂的化学连锁反应,目前对这类反应仅获得部分的了解,它最终的结果是改变了突触的连接强度,这种改变可能维持几天,几个星期,几个月,甚至更长的时间(这可能就构成了一种特殊记忆形式的基础——见第十三章描述的赫布学习率)。我们现在可以从分子的水平来解释认知过程,例如记忆。一个实验的例子:用化学的方法阻断小鼠海马中的NMDA通道,小鼠不能记住它到过的地方。
抑制性突触的性质如何?是否存在这样的神经元,它的轴突的一些末梢产生兴奋性的作用,而另一些产生抑制性的作用?令人惊奇的是,在新皮层中从未或很少存在这种现象。更确切他讲,一个特定神经元轴突的所有末梢或都兴奋或都抑制,从未有两者并存的情况。上面提到,兴奋性突触的神经递质是谷氨酸,而抑制性突触的递质是相对较小的GABA分子(1)。在新皮质中,约有五分之一的神经元释放GABA递质(2)。
大多数突触传递是化学的而不是电的,这样一个事实就产生了重要的后果,即一些特殊的小分子在浓度非常低的情况下也阻断它。这就是为什么剂量只有150微克的LSD能引起幻觉的效果。这也能解释为什么一些药在一定条件下能缓减精神状态,例如沮丧,看上去是由于某些神经传递机制的功能衰退而引起的,例如:安眠药中的化学物质结合了GABA受体,增强了GABA的抑制作用功能。这种突触抑制的增强有利于促进睡眠。镇静药利眠宁与安定也是苯二氮卓(benzodiazepine),有类似的功效。
在新皮层中,兴奋性与抑制性不是对称分布的,但一些理论模型假设它们是对称的。从皮层的一个区到另一个区的长距离连接只能通过锥体细胞来实现。这些细胞都是兴奋型的。大多数抑制性神经元的轴突较短,仅影响它附近的神经元。①没有任何两个形态结构类似的神经元(可能有极少数的例外),会产生一个是兴奋的,而另一个是抑制的现象。整个分布的非对称性至少表现在两个方面:一个方面是神经元不能发放负的峰电位,另一个方面产生兴奋或抑制的神经元属于不同的类。然而、所有的神经元都接受兴奋性或抑制性的输入,这可能为了防止神经元总处在静息状态或永不停息的发放状态。
在新皮层中主要有两类神经递质:兴奋性的谷氨酸递质(或相近的物质)和抑制性的GABA递质。遗憾的是,事情并不那么简单,存在着许多其他的神经递质。脑干中那些投射到皮层的神经元用5一羟色胺、去甲肾上腺素、多巴胺等为递质。脑中其他神经元用乙酰胆碱作为递质,约有五分之一的抑制性神经元在释放GABA的同时,也释放一种更大的有机分子——肽。这些递质大多数产生的效应要比两类主要的快速递质(谷氨酸和GABA)慢。它们通常用于调制细胞的发放强度,而不是直接使它发放。这些递质主要可能参与更一般的过程:例如保持皮层清醒,或者要记住什么,而不是参与大量复杂的信息快速处理过程。
不仅存在有多种神经递质(尽管只有两种神经递质完成了大部分工作),而且还有多种离子通道。至少有七种不同类型的钾离子通道,且大多数还是相当普遍的。②有些通道能迅速打开,有些则缓慢打开;有些通道一旦打开就迅速失去活性,有些则较缓慢关闭:有些通道主要传递轴突上的电脉冲,有些则在胞体与树突上产生更精细的效应。为了计算神经元对输入信号所产生确切的行为变化,我们需要知道这个神经元所有的离子通道分布与特性。
不同的神经元有不同的发放模式。有些神经元的发放非常快,有些则很慢;有些神经元发放单个脉冲,有些则倾向于发放一簇脉冲。在有些情况下,同一个神经元可以用以上两种方式中的任何一种发放,主要依赖于它的活动状态和当前的行为。动物在慢波睡眠(无梦的深度睡眠状态)与清醒状态时,神经元发放的模式是不一样的,主要的原因是脑干中的神经元对丘脑与新皮质产生了不同的影响。我们最终是需要更加深入地和更全面地了解各种类型神经元的信息处理过程。
从表面上看,神经元显得异常地简单,它对众多的输入信号的响应是通过沿着它的轴突发送出一串电脉冲。只有当我们试图准确地刻画它是怎样反应的,这种反应是怎样随时间而变化的,以及它又如何随着脑中其他部分的状态而变化的,这才真正遇到神经元内在的复杂性。显而易见、我们又需要理解这些化学及电过程是怎样进行相互作用的,然后需要去掉这些过程的具体细节,用一种近似、可操作的方式来处理它们。简而言之,我们就需要建立各类神经元的简化模型,它们既不能太复杂而难以操作,也不能大简单而忽略了它的重要的特性。这可谓说起来容易作起来难。单个神经元有点像个哑巴,它能用很巧妙的方式表达着它的意思。
神经元有一个相当明显的特性,这就是单个神经元具有不同的发放率,从某种角度来说,它具有不同的发放模式。尽管如此,在任何一段时间内,神经元只能发送出有限的信息。然而,神经元在这段时间内通过许许多多的突触而得到的潜在的信息是很大的。当我们孤立地看一个神经元时,这种输入与输出之间的转化过程必定要丢失信息的。然而这种信息的丢失可以用下面的方式得到补偿,即每个神经元对输入的特定组合的反应和传送出这新的信息形式,恰恰不是传送到一个地方,而是到许多地方。因此,由于单根轴突上有许多的分枝,沿着轴突下行传导的电脉冲是以相同的模式被分布在不同的突触上。一个神经元在它的某个突触上接收到的信息与其他许多神经元接收到的是一样的。所有这一切表明了:在某一时刻,我们不能仅仅单独考虑单个神经元,而必须考虑许多神经元综合的效果。
认识到这样一个事实是很重要的:一个神经元仅能简单地告知另一个神经元它的兴奋程度。①这些信号不给接受神经元其他的信息,例如:第一个神经元的位置等。②该信号中的信息通常与外部世界的某些活动相联系,例如,由眼睛光感受器接收的信号。
从感觉上讲,大脑所获得的通常是与外部世界或身体其他部分有关的信息。这就是为什么我们所看到的那些东西都位于我们的外部,尽管负责担任“看”的神经元位于脑中,对许多人来说,这是个根深蒂固的观念:“世界”位于他们的身体外,然而从另一种角度来看(他们所知道的),世界又完全位于他们的脑中。这对你的身体来说也是正确的,你对它所了解的不是附于你的头上,而是位于你的脑中。
当然,如果我们打开头骨把某个神经元发放的信号取出来,一般能判断该神经元的位置。但是我们所研究的大脑并不知道这种信息。这就解释了在正常情况下,为什么我们不能知道感知与思考发生在脑中的确切位置。不存在这样的神经元来编码这种信息。
回忆一下亚里斯多德认为这些过程都发生在心脏中,因为他既可以知道心脏的位置,又可观察到一些精神活动过程——例如
但这种传送速度大慢,以致不能携带快速的信息。恋爱中在行为上发生的变化。如果不借助特殊的仪器,我们就不能对人脑中的神经元做类似的实验。这些及其他的有关内容将在下一章中介绍。
①我将会集中讨论在脊椎动物(像人类)所发现的“典型”的神经元,这些神经元在无脊椎动物中(例如昆虫)几乎没有什么区别。
①对人工神经网络说,信号可以沿着反方向传输,称为逆向。
①红细胞是例外。
②目前还不清楚它更精确的数目,但到2000年左右或许将会知道。
①它的体积比一个细菌的细胞如大肠杆菌(Eli)约大1000倍。
(1)这种解释是过于简化了,因为高子的流动还依赖于跨膜的电位差。
①1型突触具有圆形的囊泡,而2型的囊泡通常呈椭圆型或扁平状的,2型比1型更具对称性,且它的突触裂隙要小些。(l)有些仅对跨膜电压的变化有响应,有些仅当某些特殊的小分子——神经递质——与膜外的蛋白质相结合时有响应。有些蛋白质具有离于通道,它能迅速地打开,让离子通过去,有些不具有这些功能。它们在细胞内通过间接的方式产生慢效应,就是具有神秘色彩的第二信使。
②谷氨酸是构成蛋白质的二十种氨基酸中的一种,它有时被用来放在食物中以增加香味。
③这类受体的基因已被分离出来。
①主要有两类GABA受体,A型是一个快速的离子通道,它允许氯离子通过,D型受体速度较慢,是第二信使系统的通路。
②当成熟后,这种神经元在树突上很少或没有棘,它们的突触直接位于树突或胞体上。它们一般比具有棘的兴奋性神经元发放更快。有几种相当不同类型的抑制性神经元,但详细地描述它们已超出了本书的范围。
①有一种“篮状细胞”,能在某个皮层区内有相当长的抑制性连接。
②例如.一个称IC的钾离子通道,能被钙离子的内部浓度激活。
①除了编码平均发放率外,发放模式中也可能包含另一些信息。
②神经元能够沿着轴突发送化学信号。在一些情况下,它们能传递额外的一些信息。
'英'弗兰西斯。克里克《惊人的假说》
第九章 几类实验
“研究是一门艺术,即如何设计一些方案去解决那些难题的艺术。”
——彼得·梅达沃爵士(Sir Peter Medwar)
严格他说,每个人所能确信的只是他自己是有意识的。比如说,我知道我是有意识的。在我看来你的行为举止与我很相似,特别是你使我相信你是有意识的,故而我很有把握地推断你也是有意识的。倘若我对自己的意识的本质感兴趣的话,我就不必仅仅把研究局限在自己身上,而完全可以在别人身上做实验,只要他们不是处于昏迷状态。
要揭示意识的神经机制仅仅靠对清醒的受试者进行的心理学实验是不够的。我们还必须研究人脑中的神经细胞、分子以及它们之间的相互作用。我们可以从死者的脑中获得关于脑结构的大部分信息。但要研究神经细胞的复杂行为,则必须在活体上做实验。实验本身并不存在什么难以克服的技术问题。更多的是由于伦理道德方面的考虑使得许多这样一类实验变得不可能,或是十分困难。
大多数人并不反对在他们的头皮上放置电极来测量脑电波。但是为了直接把电极插入活体脑组织而要移去部分头骨,即便这只是暂时的,也是众人所不能接受的。即便有人甘愿为了科学发现而接受开颅实验的话,也不会有医生同意实施这种手术。他会说这是违背其希波克拉底誓言的,或者更有可能说会有人为此而控告他。在我们这个社会里,人们会自愿参军并不惜受伤甚至牺牲,却未必会愿意仅仅为了获取科学知识而接受那些有危险性的实验。
有少数勇敢的研究者在他们自己身上做实验。英国生物化学和遗传学家霍尔丹(J.B。S.Haldane)就是一个著名的例子。他甚至写了一篇关于这方面的文章,名为《作自己的实验兔子》(On Being One’s Own Rabbit),此外还有一些医药史上令人传颂的故事,如罗纳德·罗斯爵士(Sir Ronald Ross)在自己身上证明蚊子传播疟疾。但除此以外,为那些可能有助于满足科学好奇心的实验去充当受试者,这是不被鼓励的,甚至是被禁止的。
在某些情况下,必需对一些病人在清醒状态下做脑部手术。这样,如果病人同意,便可在裸露的脑做一些很有限的实验。由于脑中没有痛觉感受器,病人不会因为裸露的脑的表面受到轻微电刺激而感到不适。遗憾的是,在手术中可供做实验的时间通常很短,而且也很少有神经外科医生出于对脑的细微工作感兴趣而进行这种尝试。这种研究是在本世纪中期由加拿大神经外科医生怀尔德。彭菲尔德(wilder Penfield)开创的。近一个时期西雅图的华盛顿大学医学院的乔治·奥杰曼(George Ojemann)领导进行了该领域的研究。他用短暂的刺激电流抑制电极附近的一小块区域内神经元的活动。如果电流足够微弱,去掉后并不会造成永久的影响。他将精力集中在与语言有关的皮层区域;这是因为当他切去患者的部分大脑皮层以降低他们癫痫病发作的可能性时,他希望尽可能少地使邻近的语言区受到损伤。
奥杰曼有一个实验结果很出名。患者自幼会讲英语和希腊语。当大脑左侧新皮层表面的一些区域受到电刺激时,她暂时无法使用某些英语词汇,但这并不影响她使用相应的希腊语,刺激其他部位则会出现相反的情况,这表明两种语言的某些特征在脑中的定位有显著的差异。
***
在大多数情况下,我们只能从头骨外研究人脑的行为活动。①现在已有多种