中的高能粒子 作者:[澳]罗杰·柯莱-第13章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
阐明的爆发的个数还要多!或许我们应当想起,科学就假定宇宙多少是以合乎理性的面貌呈现在我们面前这个意义来看,宇宙是可以描述的。
因为我们知道,宇宙中的γ射线往往是宇宙射线在发射源发生的相互作用的结果,所以把γ射线爆发归入了宇宙射线的讨论内容之中。对γ射线爆发的解释可能是揭示宇宙辐射之谜的重要关键。另外,γ射线爆发有一些和宇宙射线类似的纠缠不清的特性。它们都是均匀地来自所有方向,并且它们之间以及与任何其他已知的天体物理过程之间都看不出有什么联系。
对γ射线爆发的观测
原子弹爆炸的特性就是产生短暂而强烈的γ射线爆发。检查是否遵守1963年部分禁试条约的一个有效办法是,由美国军事部门发射维拉(Vela)卫星系列,卫星装备着γ射线检测器构成的检测系统对γ射线的短暂爆发进行监测。令人高兴的是,卫星检测系统对来自空间和来自地球表面的γ射线都同样敏感。可是,又让人遗憾的是,所接收到的爆发分不清是从哪里来的!发现了一些明显具有核爆炸特点的强烈爆发,但是有好些年都没能公诸于众。用比较传统的检测方法在相同时间并没有检测到爆发。
当年在20世纪60年代末期,S·科尔盖特(Stirling Colgate)和他的同事们在新墨西哥州对各种类型超新星爆发的预期的详细过程进行了计算。他们的预言之一是,超新星会产生强烈的γ射线爆发;这似乎是对维拉卫星检测到的现象的可以相信的解释。然而,在卫星检测到的资料中寻找不到任何当时超新星爆发的形迹,即找不到它们之间的相关性。
由于没有现成的解释,就需要从最初的原理出发系统地对爆发现象进行检验。有个更简单的问题是,爆发不一定来自超新星,但是它是否能由一个以上的航天器用符合方法在同一时间测量呢?在科尔盖特和E·泰勒(Edward Teller)[或许人们更熟悉他在作为γ射线源的原子弹中的工作]的鼓舞下,从1969年到1972年,利用从4颗维拉卫星取得的资料进行了这方面的探索。任何一个航天器所检测到的可能爆发率都很低。在整个观测期间,有16次爆发两个航天器同时检测到,有两次爆发四个航天器都检测到了。作为统计性的偶发事件来看符合的机会也太少了。结论必须是,γ射线爆发是宇宙间不断发生的事件,爆发源尚且不能确定,似乎不是超新星。
当前对γ射线爆发的观测研究主要集中在一个实验(爆发和暂现源实验,BATSE)。这个实验是专门为观测研究γ射线爆发设计的。另外,1991年由航天飞机发送的NASA空间飞行器载着康普顿γ射线天文台也对此进行部分的观测研究。这个实验的灵敏度很高,比维拉卫星系统检测到高得多的爆发发生率。爆发完全由γ射线和高能X射线组成。也就是,大多数粒子携带着1MeV左右的能量,很少有能量低于0。05MeV的粒子。尽管在天文台的观测资料中进行了努力搜寻,至今尚未发现爆发的光学对应体。
所检测到的爆发平均发生率粗略地说是每天一次。正像我们说过的那样,爆发是短暂的,一般只持续几秒钟的时间;不过也曾观测到短到3%秒和长到100秒的爆发。引起人们兴趣的一点是,似乎很少有持续2秒钟左右的爆发。可能存在着两种不同类型的爆发,时间短的一种持续时间为1秒钟左右(平均为0。3秒),时间长的一种持续时间长于3秒钟(平均为20秒)。在这里我们必须得仔细一点,因为如果我们的仪器更灵敏的话很有可能检测到持续时间更长的信号。这是受到1994年2月17日的一次十分强烈的爆发的启发而想到的。那次爆发首次出现持续的时间为180秒钟,但后来发现它的某些效应一直持续显示到10小时后。天文学家往往试图知道观测到的这种现象的精细时间结构。因为我们知道,现象的时间结构可以提供有关源的大小的线索。在爆发持续时间中,曾经见到过时间结构短于0。1%秒的爆发,它提示我们会存在着比300千米还小的发射源。
我们很快就会知道,探测爆发方向的一个精密的方法是,测量信号通过若干颗卫星上检测器的时间。在这个功能上,BATSE和以往的爆发实验大不一样,它只用系统自身的检测器就能把每次爆发的方向以适合要求的精确度确定下来。它是潜在能力很强的设备装置,因为如果当爆发出现时地面各天文台能得到爆发方向的信息的话,就有可能调动光学的、射电的和各种其他的望远镜立即指向天空那个区域进行搜寻,进行对发射源的联合认证。利用BATSE就几乎有可能实现这一过程,但是由于在方向确定上还有相当大的不确定性以及处理数据资料仍需要时间,所以仍然有很大的局限性。在这一目标完全到达之前,可能还需要进行下一阶段的完善化爆发实验,美国正在开发的称做HETE(高能暂现实验)的小型卫星实验,将很快使这个多望远镜实验第一次变得切实可行。
从最早期起,所观测到的爆发就是突然出现的。爆发到达各个特定空间飞行器的时间之间一般保持在1/20秒钟以内。这段保持时间使得我们能用与地面检测器阵列再现大气中宇宙射线簇射方向大体相同的方法找到爆发到达方向。维拉卫星的轨道半径比100000千米(十万公里)稍大些。当爆发出现时,两颗维拉卫星如果恰好位于相距最远的轨道两端,两卫星之间的距离间隔最大,是轨道半径的两倍。γ射线是光线的高能形式,行进的速度是光速——每秒钟30万千米。这就是说γ射线爆发在击中第一颗卫星后最多再有2/3秒就到达了第二颗卫星。当然,这段时间间隔的长短取决于爆发相对于卫星的严格的到达方向和卫星间的距离相隔。由于卫星位置通常知道得很精确,所以利用时间差就能计算爆发源的方向。用这种方法计算出爆发源真实有用的方向最少需要三颗卫星。卫星越多计算的结果越准确。例如,当爆发是从恰好与卫星连线垂直的方向上发射来的,时间差便是零。任何其他方向都将得到最长直到2/3秒的中间时间差,时间差为2/3秒就说明爆发来自两颗卫星连线的方向上。
在只采用三颗卫星的情况下,这项技术显然相当粗糙,但随着时间的流逝,其他空间飞行器上的γ射线检测器也被迫加入搜寻行列,而且其中有些距地球很远,因而是能使某些爆发的方向测定得很准的。例如,刚宣布了爆发被发现不久,维拉空间飞行器和阿波罗16号飞船指令舱就检测到了它。指令舱中的γ射线检测器本来是为了确定月球表面的组成而设置的,但也能检测到任何其他地方来的γ射线。在这件早期事例中,所确定的发射源方向,其定向不确定度约有15°。这样大的方向不确定性很难用来与光学天文照相相比较,但是从它与银河系平面方向有50°的很大角度来看也是一个未来使人担心的征兆,它预示着似乎爆发不是来自我们银河系。如果确实来自银河系,也必定来自很近的厚实的旋臂以内。
我们很快就清楚地认识到,天空确实不存在爆发源出现的主要方向。甚至在早期实验找到的粗略方向之中,也看不出爆发集中围绕在太阳方向上、银河系的大体方向上以及最近的相邻星系方向上的迹象。这个结论的正确性直到20年后仍然没变,它也是天体物理学中的一个重要的神秘不解的事实。
天文学家们已经学会在这样的环境中忍耐。宇宙射线发射源的距离通常已由其时间不长的旅行提供了线索。因为已经知道银河系的实际尺度,也知道与邻近星系间的距离,所以我们知道这段时间小于一个世纪。像脉冲星那样出现发射间歇的情况是很可贵的,脉冲星发出的射电波不断地及时传播出去,并在穿过我们的星系磁场及其中的电离气体时产生旋转。在这种情况下,对射电波的传播和旋转的测量提供了测量脉冲星与地球间的距离的方法(附带地测量了磁场)。几乎从脉冲星的现象刚刚发现时起(奇妙的是几乎和γ射线爆发的发现在同一时间),射电天文学家就知道关于脉冲星的距离。那样幸运的情况在γ射线爆发中未曾发生过,我们只好被迫采用能找到的办法推测γ射线爆发的距离和有可能的发射源。
有一项特殊的技术,几乎作为困难环境下的最后依靠手段而被引了进来。这项技术包括查看爆发的数量是如何随着亮度函数而变化的。
恒星的表观亮度(在这里是γ射线爆发的强度)随着观测者与光源间的距离增加而减小。这是我们的共同经验。准确的数学说法是接照平方反比定律减小。事实根据是,恒星发出的光束随着距离的不断增加覆盖的面积越来越大。恒星的光射向四面八方,到恒星的距离增加一倍,其亮度就减小4倍,这是因为此时星光照亮的球面增大到4倍(球面增大与半径增大的平方成正比)。所以,用数学的说法是,表观亮度(每平方米通过的光的总量)的减小随着距离的平方变化。
假定我们现在就是测量恒星亮度的天文学家,并且假定所有恒星的实际亮度(每秒钟发射的光子总数)都相同。当然这不会是真的,但所论证的道理正确可行。当我们查看这个简单模型天空的景像时,所看到的样子仍然和实际的天空相同。星星还是有亮有暗,但这里主要是由于恒星的距离有远有近。问题是,在我们的简化模型中,比某一特定亮度更亮的恒星有多少?我们进一步还要问,如果到恒星的距离增加一倍,会发生什么变化?我们知道,亮度将减小到原来的1/4,但此时以到恒星距离为半径的球体体积将增大到原来的8倍(球的体积与其半径的立方成正比)。这时将有原来恒星8倍之多的恒星更接近我们,因为它们更近了所以显得更亮。我们看到在选定的恒星亮度与比它更亮的恒星数之间存在一定的关系。
我们绘制了一张爆发亮度随更亮的爆发数目变化的对数曲线图。因为曲线斜率是由3/2这个数值给出的(其中3来源于体积中的立方关系,而2来源于平方反比定律),而这个数值有赖于恒星(或γ射线源)在空间如何分布,所以这一方法实际上应当十分有效。注意到自变数的立方部分来自球体的体积与距离间的关系,如果恒星不处于球体中,关系便有所不同。如果恒星分布在盘中(扁平的旋涡星系就是这样的形状),则作为自变数的该数为平方而不是立方。如果恒星在一条直线分布着(例如恒星沿星系一条旋臂分布),则体积与距离成正比。我们在观测实验中所发现的关于γ射线爆发源的信息,就和上述对恒星的论证结果相同。我们能找到多少高过各种亮度水准的爆发,要看它是否符合球的曲线(把宇宙视为整体或只局限于一个不大的球形区域),盘的曲线(源分布在整个星系平面)或者一条直线(一条旋臂)。
上述测量完成后,答案使人们倍感兴趣。图线的斜率确实是3/2,但只限于稀少的强爆发。在描绘弱爆发的图线尾部,有一个空缺。取得这样的测量结果总是困难的(这一实验即使是像我们所描写的只能作轻微的修正,事实上由于某些技术上的原因在选择爆发的方法上也要除掉一些偏离点)。不过,BATSE曲线同另一个数据组仍然拟合得很好,这个数据组来自先锋号金星轨道空间飞行器,它所搜集的资料覆盖时间更长(10年之久),因而取得的结果具有相当的可信性。这似乎意味着,较亮的(靠近的)爆发源围绕着我们均匀分布着,但在一定的距离处这个体积有个尽头,其结果就是看到遥远的发射源没有几个。问题是我们不知道这些爆发源所占有的体积有多么大。边界离我们有多远?曾经有的时候认为,可能我们太阳系的边界(包括太阳风层或围绕太阳的慧星云)就是这个边界,我们银河系晕的边界(扩大了1万倍)就是这个边界,或者甚至整个宇宙的边界(再扩大100万倍)才是这个边界。就这样我们已经知道了不少情况,但仍然没有得到某些重要线索。
显然,γ射线爆发是天体物理学中的一个重大谜团。在初次观测到它们时,曾认为它们可能与我们银河系中的中子星附近的效应有联系。这样的想法流行了15年或更长的时间,但由于它在解释强度和方向分布上的困难,看来这种认识靠不住。关于爆发的起源至今还没有公认的一致看法。总之,我们的经验是,产生γ射线的过程与产生宇宙射线的过程有紧密的联系。有理由相信,对高能宇宙射线与γ射线爆发二者的起源问题,会涌现某种共同的答案。
上一页 目 录 下一页
□ '澳'罗杰·柯莱等/著 车宝印/译
第八章 最高能宇宙射线和蝇眼(一)
对宇宙间最高能粒子进行检测是一项技术挑战。更加困难的是,把仪器设备安置在高空气球和卫星上带上天空进行的天体物理观测实验。如果是为了检测来自恒星和星系的X射线或γ射线辐射,这项技术就有很大的意义。我们知道地球大气是这些种辐射的强吸收物,气球或卫星能使观测在大气以上进行。另一方面,如果打算用这种办法捕捉超高能宇宙射线,就必须有极大的耐心。能量高于10^19eV的宇宙射线粒子,平均每年在1平方千米的面积上只落下一颗。换成空间观测,利用面积为1平方米的典型卫星检测器拦截的话,等待100万年才有可能检测到1颗这类宇宙射线的粒子!
你可能这样想,科学家们在极稀少的采集物面前研究这些宇宙射线一定倍感失望。但是实际上,与某些其他项研究的同行们比较起来,总还算比较幸运。例如,建造巨大检测器用来观测来自坍缩恒星的引力波,或者利用检测器去观测来自活动星系的高能中微子,那就更没有把握。我们知道,极高能量的宇宙射线是存在的,而且是可检测到的!同样的这些话,对于引力波或高能中微子就不能说。超过30年的长期精心观测,确实观测到了一小撮能量大于10^20eV的宇宙射线粒子。它们并不是从原来预期的某些方向射来的。事实上,随着时间的推移,我们已经认识到追究这些极高能量粒子的起源极其困难。尽管我们对这方面的知识有了很大进步,并将在本章对此给予阐述,我们仍然在找某些出路。我们即将看到,下一阶段的探索需要面对从未提出过的最辉煌科学计划,并进行国际性的合作研究,然后才有可能搞明白,质量只有一千亿亿亿分之一千克的质子为什么能有由房顶落地的一块砖头那样大的能量。
与其诅咒大气是一种辐射的吸收物,不如说说我们看到宇宙射线物理学家如何利用大气的优点。除了人们感兴趣的最低能量宇宙射线,因其粒子异常丰富能用小型气球和卫星进行检测器监视外,科学家们利用大气能使稀有的粒子更容易看到。宇宙射线在大气中产生的广延空气簇射将初级粒子的能量转变成很大数量的次级高能粒子。这些高能粒子造成空气以几种方式发光(特别指契伦科夫光和荧光),因而能在远处对宇宙射线进行检测。簇射以最完美的碟形前沿传播,使得在地面上设置粒子检测器阵列对宇宙射线进行检测成为可能。在地面上对空气簇射的落点数目取样,就能充分确定我们想知道的宇宙射线最初的到达方向、能量和质量等信息。
第一套巨型阵列
自从奥格尔发现了广延空气簇射时起,