爱爱小说网 > 其他电子书 > 从一到无穷大 >

第12章

从一到无穷大-第12章

小说: 从一到无穷大 字数: 每页3500字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



要比原子核受轰击的截面积大得多,我们又显然不能把每个粒子都瞄准原子核,因此,粒子要在穿过许多原子的电子壳层后,才有直接命中某一个原子核的机会。图72 说明了这种局面。在图上,原子核用黑色小圈点表示,电子壳层用阴影线表示。原子与原子核的直径之比约为10;000:1,因此它们受轰击面积的比值为 100;000;000:1。我们还知道,带电粒子在穿过一个原子的电子壳层后,能量要减少万分之一左右。这样,它在穿过一万个电子壳层后就会停下来。由这些数据不难看出,在一万个粒子中,只有一个有可能在能量消耗光之前撞到某个原子核上。考虑到带电粒子给靶子上的原子以摧垮性打击的效率是如此之低,要使一克硼完全嬗变,恐怕至少也得把一台最先进的加速器开动两万年!

  4。 核子学
  往往有这么一些词,看起来似乎不那么恰当,但却颇有实用价值。“核子学”就是这样的一个。因此,我们不妨采用这个词。正如“电子学”讲的是自由电子束的广泛实际应用一样 ;“核子学”也应理解成对核能量的大规模释放进行实际应用的科学。上一节中我们已经看到,各种化学元素(除去银以外)的原子核内部蕴藏着巨大的内能;对轻元素来讲,内能可在聚变时放出;对重元素来讲,则在裂变时放出。我们又看到,用人工加速的粒子轰击原子核这个方法,尽管在研究核嬗变的理论上极为重要,但由于效率极低,派不上实际用场。
  不过,这种低效率主要是由于α粒子和质子是带电粒子,它们在穿过原子时会失去能量,又不易逼近被轰击的靶原子核。我们当然会想到,如果用不带电的中子来轰击,大概会好一些。然而,这还是不好办!因为中子可以轻而易举地进入原子核内,它们在自然界中就不以自由状态存在;即使凭借人工方法,用一个入射粒子从某个原子核里“踢”出一个中子来(如铍靶在α粒子轰击下产生中子),它也会很快地又被其他原子核重新俘获。
  这样,要想产生强大的中子束,就得从某种元素的原子核里把中子一个一个地踢出来。这样做,岂不是又回到低效率的带电粒子这一条老路上去了吗!
  然而,有一个跳出这种思性循环的方法:如果能用中子踢出中子,而且踢出不止一个,中子就会象兔子繁衍(参见图 97); 或者象细菌繁殖一样地增加起来。不久,由一个中子所产生的后代就会多到足以向一大块物质中的每一个原子核进攻的程度。
  自从人们发现了这样一种使中子增长的核反应后,核物理学就空前繁荣起来,并从作为研究物质最隐秘性质的纯科学这座清静的象牙塔中走了出来,投进了报纸标题、狂热政论和发展军事工程的旋涡。凡是看报纸的人,没有不知道铀核裂变可以放出核能一一通常称为原子能一一这种能量的。铀的裂变是哈恩 (Otto Hahn)和斯特拉斯曼(Fritz Strassman) 在1938年末发现的。但是,不要认为由裂变生成的两个大小差不多相等的重核本身能使核反应进行下去。事实上,这两部分核块都带有许多电荷(各带铀核原电荷的一半左右),因此不可能接近其他原子核;它们将在邻近原子的电子层作用下迅速失去自己的能量而归于静止,并不能引起下一步裂变。
  铀的裂变之所以能一跃成为极重要的过程,是由于人们发现了铀核碎片在速度减慢后会放出中子,从而使核反应能自行维持下去(图 73)。
  裂变的这种特殊的缓发效应的发生原因,在于重原子核在裂开时会象断裂成两节的弹簧一样处于剧烈的振动状态中。这种振动不足以导致二次裂变(即碎片再一次双分),却完全有可能抛出几个基本粒子来。要注意:我们所说的每个碎块放射出一个中子,这只是个平均数字;有的碎块能产生两个或三个中子,有的则一个也不产生。当然,裂变时碎块所能产生的中子数有赖于振动强度,而这个强度又取决于裂变时释放的总能量。我们知道,这个能量的大小是随原子核重量的增大而增加的。因此,我们可以预料到,裂变所产生的中子数随周期表中原子序数的增大而增多。例如,金核裂变(由于所需的激发能太高,至今尚未实验成功)所产生的中子数,大概会少于每块一个,铀则为每块一个(即每次裂变产生两个),更重的元素(如钚),应多于每块一个。
  如果有一百个中子进入某种物质,为了能够满足中子的连续增殖,这一百个中子显然应产生出多于一百个中子。至于能否达到这一状况,要看中子使这种原子核裂变的效率有多大,也要看一个中子在造成一次裂变时所产生的新中子有多少。应该记住,尽管中子比带电粒子有高得多的轰击效率,但也不会达到百分之百。事实上,总有一些高速中子在和某个原子相撞时,只交给它一部分动能,然后带着剩杂的动能跑 掉。这一来,粒子的功能将分散消花在几个原子核上,而没有一个发生裂变。
  根据原子核结构理论,可以归结出这样一点:中子的裂变率随裂变物质原子量的递增而提高,对于周期表末尾的元素,裂变率接近百分之百。
  现在,我们给出两个中子数的例子,一个是有利于中子增多的,一个是不利的:(A)快中子对某元素的裂变率为35%,裂变产生的平均中子数为 1。6。这时,如果有100 个中子,就能引起35次裂变,产生35 ×1。6=56个第二代中子。显然,中子数目会逐代下降,每一代都减少将近一半。(B)另一种较重元素,裂变率升至65%,裂变产生的平均中子数为2。2。此时,如有100个中子,就会导致65次裂变,放出的中子总数为65×2。2=143个。每产生新的一代,中子数就增加约50%,不用多久,就会产生出足以轰击核样品中每一个原子核的中子来。这种反应,我们称为分支链式反应;能产生这种反应的物质,我们叫做裂变物质。
  对于发生渐进性分支链式反应的必要条件作细心的实验观测和深入的理论研究以后,可得出结论说,在天然元素中,只有一种原子核可能发生这种反应。这就是铀的轻同位素铀235。
  但是,铀235在自然界中并不单独存在,它总是和大量较重的非裂变同位素铀238混在一起(铀235占 0。7%;铀 238占99。3%),这就会象湿木柴中的水分妨碍木柴的燃烧一样影响到铀的分支链式反应。不过,正因为有这种不活泼的同位素与铀235掺杂在一起,才使得这种高裂变性的铀235至今仍然存在,否则,它们早就会由于链式反应而迅速毁掉了。因此,如果打算利用铀235的能量,那么,就得先把铀235 和铀238 分离开来,或者是研究出不让较重的铀238捣蛋的办法。这两类方法都是释放原子能这个课题的研究对象,并且都得到了成功的解决。由于本书不打算过多地涉及这类技术性问题,所以我们只在这里简单地讲一讲。
  要直接分离铀的两种同位素是个相当困难的技术问题。它们的化学性质完全相同,因此,一般的化工方法是无能为力的。这两种原子只在质量上稍有不同一一两者相差1。3%,这就为我们提供了靠原子质量的不同来解决问题的扩散法、离心法、电磁场偏转法等。图75a和b示出了两种主要分离方法的原理图,并附有简短说明。
  所有这些方法都有一个缺点:由于这两种同位素的质量相差甚小,因而分离过程不能一步完成,需要多次反复进行,才能使轻的同位素一步步富集。这样,经过相当多次重复后,可得到很纯的铀235产品。
  更聪明的方法是使用所谓减速剂,人为地减小天然铀中重同位素的影响,从而使链式反应能够进行。在了解这个方法之前,我们先得知道,铀的重同位素对链式反应的破坏作用,在于它吸收了铀235裂变时产生的大部分中子,从而破坏了链式反应的进行。因此,如果我们能设法使中子在碰到铀235的原子核之前不致被铀238原子核所俘获,裂变就能继续进行下去,问题也就解决了。不过,铀238比铀235 约多140倍,不让铀238得到大部分中子,岂不是想入非非! 然而,在这个问题上,另一件事实帮了忙。这就是铀的两种同位素“俘获中子的能力”随中子运动速度的不同而不同。对于裂变时所产生的快中子,两者的俘获能力相同,因此,每有一个中子轰击到铀235的原子核,就有一百四十个中子被铀238所俘获。对于中等速度的中子来说,铀238的俘获能力甚至比铀235 还要强。不过,重要的一点是:当中子速度很低时,铀235能比铀238俘获到多得多的中子。因此,如果我们能使裂变产生的高速中子在与下一个铀(238或235)原子核相遇之前,先大大减速,那么,铀235的数量虽少,却会比铀238有更多的机会来俘获中子。
  我们把天然铀的小颗粒,掺在某种能使中子减速而本身又不会俘获大量中子的物质(减速剂)里面,就可得到减速装置。最好的减速剂是重水、碳、铍盐。从图76可以看出,这样一个散布在减速剂中的铀颗粒“堆”是如何工作的。
  我们说过,铀的轻同位素铀235(只占天然铀的0。7%)是唯一能维持逐步发展的链式反应、并放出巨大核能的天然裂变物质。但这并不等于说,我们不能人工制造出性质与铀235相同、而在自然界中并不存在的元素来。事实上,利用裂变物质在链式反应中所产生的大量中子,我们可以把原来不能发生裂变的原子核变为可以裂变的原子核。
  第一个这种例子,就是上述由铀和减速剂混合成的反应堆。我们已经看到,在使用减速剂以后,铀238 俘获中子的能力会减小到足以让铀235进行链式反应的程度。然而,还是会有一些铀238的原子核俘获到中子。这一来又会发生什么情形呢?
  铀238的核在俘获一个中子后,当然就马上变成更重的同位素铀239。不过,这个新生子核的寿命不长,它会相继放出两个电子,变成原子序数为94的新元素的原子。这种人造新元素叫做钚(Pu-239),它比铀23 5还容易发生裂变。如果我们把铀238换成另一种天然放射性元素钍(Th…232),它在俘获中子和释放两个电子后,就变成另一种人造裂变元素铀233。
  因此,从天然裂变元素铀235开始,进行循环反应,理论上和实际上都可能将全部天然铀和钍变成裂变物质,成为富集的核能源。
  最后,让我们大致计算一下,可供人类用于和平发展或自我毁灭的战争中的总能量有多少。计算表明,所有天然铀矿中的铀235所蕴藏的核能,如果全部释放出来,可以供全世界的工业使用数年;如果考虑到铀238转变成钚的情况,时间就会加长到几个世纪。再考虑到蕴藏量四倍于铀的钍(转变为铀233),至少就可用一、两千年。这足以使任何“原子能匮乏”论不能立足了。
  而且,即使所有这些核能源都被用光,并且也不再发现新的铀矿和钍矿,后代人也还是能从普通岩石里获得核能。事实上,铀和钍也跟其他元素一样,都少量地存在于一切普通物质中。例如,每吨花岗岩中含铀4克,含钍12克。乍一看来,这未免太少了。但不妨往下算一算:一公斤裂变物质所蕴藏的核能相当于两万吨TNT炸药爆炸时或两万吨汽油燃烧时所放出的能量。因此,一吨花岗岩中的这16克铀和钍,就相当于320吨普通燃料。这就足以补偿复杂的分离步骤所会带来的一切麻烦了一一特别是在当我们面临富矿源趋于站竭的时候。
  物理学家们在征服了铀、钍之类的重元素裂变时所释放的能量后,又盯上了与此相反的过程一一核聚变,即两个轻元素的原子聚合成一个重原子核,同时释放出大量能量的过程。在第十一章里,大家会看到,太阳的能量就来自因氢核进行猛烈的热碰撞而合成较重的氮核这种聚变反应。为了实现这种所谓热核反应,以供人类应用,最适用的聚变物质是重氢,即氘。氘在水里以少量存在。氘核含有一个质子和一个中子。当两个氘相撞时,会发生下面两个反应当中的一个:
  为了实现这种变化,氘必须处于几亿度的高温下。
  第一个实现核聚变的装置是氢弹,它用原子弹来引发氘的聚变。不过,更复杂的问题是如何实现可为和平目的提供大量能量的受控热核反应。要克服主要的困难一一约束极热的气体一一可利用强磁场使氘核不与容器壁接触(否则容器会熔化和蒸发!),并把它们约束在中心的热区内。
  第八章 无序定律
  l.热的无序
  斟上一杯水,并且仔细观察它,这时,你看到的只是一杯清澈而均匀的液体,看不出有任何内部运动的迹象(当然,这是指不晃动玻璃杯而言)。但我们知道,水的这种均匀性只是一种表面现象。如果把水放大几百万倍,就会看出它具有明显的颗粒结构,是由大量紧紧地挨在一起的单个分子组成的。
  在这样的放大倍数下,我们还可以清清楚楚地看到,水绝非处于静止状态。它的分子处在猛烈的骚动中,它们来回运动,互相推挤,恰似一个极度激动的人群。水分子或其他一切物质分子的这种无规运动叫做热运动,因为热现象就是这种运动的直接结果。尽管肉眼不能察觉到分子和分子的运动,但分子的运动能对人体器官的神经纤维产生一定刺激,从而使人产生热的感觉。对于比人小得多的生物,如悬浮在水滴中的细菌,这种热运动的效应就要显著得多了。这些可怜的细菌会被进行热运动的分子从四面八方无休止地推来搡去,得不到安宁(图77)。这种可笑的现象是大约一百年前被英国生物学家布朗(Robert  Brown)在研究植物花粉时首次发现的,因此被称为布朗运动。这是一种普遍存在的运动,可在悬浮在任何一种液体中的任何一种物质微粒(只要足够细小)上观察到,也可以在空气中飘浮的烟雾和尘埃上观察到。
  如果把液体加热,那么,悬浮小微粒的狂热舞蹈将变得更为奔放;如果液体冷却下来,舞步就会显著变慢。毫无疑问,我们所观察到的现象正是物质内部热运动的效应。因此,我们通常所说的温度不是别的,而正是分子运动激烈程度的量度。通过对布朗运动与温度的关系进行研究,人们发现在温度达到摄氏-273度,即华氏-459度时,物质的热运动就完全停止了。这时,一切分子都归于静止。这显然就是最低的温度。它被称为绝对零度。如果有人提起更低的温度,那显然是荒唐的。因为哪里会有比绝对静止更慢的运动呢?
  一切物质的分子在接近绝对零度这个温度时,能量都是很小的。因此,分子之间的内聚力将把它们紧聚成固态的硬块。这些分子只能在凝结状态下作轻微的颤动。如果温度升高,这种颤动就会越来越强烈;到了一定程度,这些分子就可以获得一定程度的运动自由,从而能够滑动。这时,原先在凝结状态下所具有的硬度消失了,物质就变成了液体。物质的熔解温度取决于分子内聚力的强度。有些物质,如氢或空气(氮和氧的混合物),它们分子间的内聚力很微弱,在很低的温度下就会被热运动所克服。氢要到14K(即-259℃)下才处于固体状态,氧和氮则分别在55K和64K(即-218℃和-209℃)时熔解。另一些物质的分子则有较强的内聚力,因此能在较高温度下保持固态。例如,酒精能保持固态到-114℃,固态水(即冰)在0℃时才融化。还有一些物质能在更高的温度下

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的