生命是什么?-第9章
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
着用发条开动的时钟有规则地运动时,这也是基本的看法。因为它决不认为开动的机制真是离开了过程的统计学性质。真实的物理学图景包括了这样的可能性:即使是一架正常运行的时钟,通过消耗环境中的热能,会立刻使它的运动全部逆转过去,以及向后倒退地工作,重新上紧自己的发条。这种事件的可能性,同没有发动装置的时钟的“布朗运动大发作”相比,正好是“半斤八两”。
68。 钟表装置毕竟是统计学的
现在我们来作一番回顾。我们已经分析过的“简单”例子是代表了许多其他的例子--事实上,是代表了所有这些逃脱了分子统计学的无所不包的原理的例子。由真正的物理学的物质(不是想象中的东西)构成的钟表装置,并不是真正的“钟表装置”。机遇的因素可能是或多或少地减少了,时钟突然之间全然走错了的可能性也许是极小的,不过,它们总还是保留在背地下。即使在天体运行中,摩擦和热力的不可逆影响也不是没有的。于是,由于潮汐的摩擦,地球的旋转逐渐地减慢,随之而来的是月球逐渐地远离地球,如果地球是一个坚硬无比的旋转着的球体,就不会发生这种情况。
事实上,“物理学的钟表装置”仍是清楚地显示了十分突出的“有序来自有序”的特点——物理学家正是在有机体遇到这种特点时,使他们深受鼓舞的。这两者看来毕竟还有某些共同之处。可是,共同点是什么,以及究竟是什么样的差别才使得有机体成为新奇的和前所未有的例子,这些还有待于了解。
69。 能斯脱定理
一个物理学系统--原子的如何一种结合体--什么时候才显示出“动力学的定律”(在普朗克的意义上说)或“钟表装置的特点”呢?量子论对这个问题有一个简短的回答,就是说,在绝对零度时。当接近零度时,分子的无序对物理学事件不再有什么意义了。顺便说一下,这个事实不是通过理论而发现的,而是在广泛的温度范围内仔细地研究了化学反应,再把结果外推到零度--绝对零度实际上是达不到的--而发现的。这是沃尔塞?能斯脱的著名的“热定理”,毫不夸张地说,这个定理有时授予“热力学第三定律”的光荣称号(第一定律是能量原理,第二定律是熵的原理)。
量子论为能斯脱的经验定律提供了理性的“基础”,也使我们能够估计出,一个系统为了表现出一种近似于“动力学”的行为必须密切地接近绝对零度到什么程度。在任何一种具体的情况下,多少温度是实际上等于绝对零度呢?
你千万别认为这个温度一定是极低的低温。其实,就是在室温下,熵在许多化学反应中都是起着极其微不足道的作用,能斯脱的发现就是由这种事实引起的(让我再说一遍,熵是分子无序的直接量度,即它的对数)。
70。 摆钟实际上是在零度
对于一台摆钟又能说些什么呢?对于一台摆钟来说,室温实际上就等于零度。这就是它为什么是“动力学地”工作的理由。你如果把它冷却,它还是一样地继续进行工作(假如你已经洗清了所有的油渍)!可是,你如果把它加热,加热到室温之上,它就不再继续工作了,因为它最后将要熔化了。
71。 钟表装置与有机体之间的关系
看上去这似乎是无关紧要的,不过,我认为它确实是击中了要害。钟表装置是能够“动力学地”工作的,因为它是固体构成的,这些固体靠伦敦-海特勒力而保持着一定的形状,在常温下这种力足以避免热运动的无序趋向。
我认为现在有必要再讲几句话,来揭示钟表装置同有机体之间的相似点,简单而又唯一的相似点就是后者也是依靠一种固体--构成遗传物质的非周期性具体--而大大地摆脱了热运动的无序。可是,请不要指责我把染色体纤维称为“有机的机器的齿轮”--这个比喻,至少不是没有深奥的物理学理论作为依据的。
最明显的特点是:第一,齿轮在一个多细胞有机体里奇妙的分布,这点我在第64节中曾作了诗一般的描述;其次,这种单个的齿轮不是粗糙的人工制品,而是沿着上帝的量子力学的路线完成的最精美的杰作。